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Abstract 

Because of its compact size, an electrical generator that uses an internal 
rotating mass as an energy source for electrical power is being developed to 
power a rail gun in a future combat system. At this stage of development, 
there are many proposed designs for these electric generators and many 
proposed designs for their possible uses: rail guns, coil guns, 
electromagnetic armor, etc. To study these various designs, a computer 
program was written to calculate the current in all parts of the electric 
generator, the load, the angular velocity of the rotating mass, and the 
velocity of the projectile from a rail gun or a coil gun. This was 
accomplished by modeling the electric generator and the rail gun by a circuit 
of inductors and resistors. This model results in a set of differential 
equations that are coupled with the equation of motion for the rotating mass 
and with the equation of motion for the projectile. 
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A LUMPED CIRCUIT MODEL OF A COMPENSATED 
PULSE GENERATOR AND RAIL GUN 

1. INTRODUCTION 

A -pensated &e generm (cornpulsator) [ 11, is an electrical generator that uses 

an internal rotating mass as an energy source for electrical power. One type of cornpulsator was 

built under the Sub-Scale Focused Technology Program (SSFTP) by the Center of Electromagnetics 

(CEM) and the Institute of Advanced Technologies (IAT), University of Texas at Austin, Texas, 

as a step to develop a cornpulsator that will power a rail gun on a future combat system. It is 

speculated, however, that a compulsator could be used to power coil guns, electromagnetic armor, 

etc. Computer programs that can evaluate the usefulness of a cornpulsator for these other 

purposes do exist, but they are not readily available. Therefore, a program was written to do this 

evaluation by calculating the current in all parts of the cornpulsator and the load, the angular 

velocity of the rotating mass, and the velocity of the projectile from a rail gun or a coil gun. To 

keep the program simple, some features of the cornpulsator were not included and some 

assumptions were made, and the program was written for a particular type of cornpulsator. This 

program, however, could be rewritten to include these features and it could be a start for modeling 

other types of cornpulsators. The intent of this report is to provide the growing community with a 

documented computer program of a simple model of a cornpulsator. This documentation may 

allow members of the community to modify or expand it to satisfy their needs. 

The rotating mass in the SSFTP is a titanium cylindrical shell 1 .O meter long and 0.3 meter in 

radius. This assembly is designed to rotate at 12,000 revolutions per minute @pm) for an energy 

storage of 25 megajoules (MJ). A field winding (see Figure 1) located on the outside surface of the 

cylindrical shell will produce a magnetic field with six poles when a current is passed through it. 

Once the magnetic field is produced, voltages are induced by the rotating magnetic field in the nine 

armature windings that are mounted on a stationary cylindrical shell surrounding the rotor. The 

armature windings are electrically connected in three groups @I, $2, and $3, with three windings in 

each group. The alternating voltage induced in each group or phase coil is shifted in phase relative 

to the other phase coils. Because there are six magnetic poles produced by the field winding and 

three phase coils, this cornpulsator is typed as a six-pole/three-phase generator. 

The three phase coils and the field coil are connected to a circuit (see Figure 2) made of 

silicon-controlled rectifiers (SCRs) that control and direct the currents. The ends of the phase coils 

connect to a full-wave rectifier bridge whose output is connected to the field coil Lf and to a half- 

wave rectifier bridge whose output is connected to the load. The other ends of the phase coils are 
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connected to a common ground in a “Y” configuration. After the drum has been spun, a small 

“seed” current is started in the field coil by an auxiliary capacitor bank, not shown in Figure 2, to 

produce a small magnetic field. This magnetic field induces alternating currents, which are full wave 

rectified and directed to the field coil by the “Pos. Bus Bar” and the “Neg. Bus Bar” in the phase 

coils. This additional current through the field coil will continue to increase if the current gain is 

greater than the energy losses. Thus, the field coil current is “self-excited” from a small seed 

current until it reaches a larger current by using some of the rotational energy. After the field coil 

current reaches the desired level, the SCRs to the “Load Bus Bar” are closed to deliver current to 

the load. 

Figure 1. Cross Section of a Six-nole/Three-chase Comnulsator. 

Load Bus Bar 

Figure 2. Comnulsator Circuit. 
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2. EQUIVALENT CIRCm MODEL 

The variables to be calculated are the shaft position and angular velocity, the projectile’s 

position and velocity, the temperature of all the resistors, and all the currents. This is done by 

taking the time derivative of all these variables, which results in a system of first order differential 

equations that can be solved by numerical methods. These differential equations are introduced 

by considering a number (N) of simple circuits, each having a resistor and an inductor (see Figure 

3). It will be shown later that each circuit represents a current loop in the cornpulsator circuit. 

The inductor and resistor in the simple circuits represent the total inductance and resistance in 

the current loop, and the mutual inductance between the simple circuits represents the magnetic 

coupling between the current loops. So let all the inductors inside the dashed box be magnetically 

coupled to each other, except for LL which represents the inductance of the rail gun or the coil 

gun. The dots represent all the other similar circuits that are not shown. Ii is the current in each 

circuit with an inductor Li and resistor Ri. To find the time derivative of the currents, consider 

the magnetic flux times the number of turns in each inductor, @i, inside the box: 

(1) 
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Figure 3. Maaneticallv Counled Circuits. 

The off-diagonal elements of the symmetrical matrix kfj,j are the mutual inductance between 

the i-th and the j-th inductor, while the diagonal elements, .ktj, j, are the self inductances. The 

electromotive force of the coil, &in each circuit is the electric field induced in the coil by the 
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changing magnetic flux Ei =-d@i/dt. This electromotive force must equal the voltage drop across its 

resistor, Ei = R$i, or 

(2) 

The time derivative of the mutual inductance will not be zero because the field coil is moved by 

the rotor, causing the mutual inductance between it and the other inductors to change with time. 

Equation 2 can now be solved for the time derivative of the currents after a diagonal matrix, Rk,j, 

is introduced: 

. 
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in which the diagonal element, Rk,k, is the resistance in the k-th circuit and all off-diagonal elements 

are zero. This matrix makes it is possible to conveniently factor out the currents in the form of a 

vector and permit the addition of the matrices in the parentheses and the multiplication of the 

inverted matrix. It is found that Equation 3 applies to more complicated circuits, such as the 

cornpulsator, when the matrix, Ri,j, has some off-diagonal elements that are not zero. Therefore, 

the introduction of the matrix, Ri,j, is a generalization of the equation. 

The time derivative of the shaft’s angular velocity, the time derivative of the projectile’s 

velocity (the acceleration), and the time derivative of the temperatures of the resistors can be 

derived from the total energy stored in the system: 

w I 
N,N N 

=- 
2 c Ii"i,jIj ++9,, +$LL(X)Ii +$eVZV2 +Cffi(Ti). (4) 

i=I, j=l i=l 

The first term is the total magnetic energy in the coils. The second term is the rotational energy 

of the rotor, in which Q is the moment of inertia of the rotor and o is the angular velocity of the 

rotor. The third term is the magnetic energy of the launcher in which the inductance of the 

launcher depends on the position of the projectile X. The fourth term is the kinetic energy of the 

projectile, in which m is the mass and v is the velocity of the projectile. The last term is the sum 

of the enthalpy of the resistors: 



H,(T) = &(T)dT, (5) 
Ta 

in which Ci(T) is the specific heat of the resistor at constant pressure and mi is the mass of the 

resistor. The enthalpy is the energy required to raise the temperature of the resistor from 

ambient temperature T, to the temperature T. The rate-that this total energy changes with time, 

after using the circuit equations, Equation 2, is 

dW I N’NI dMi,#)I +9wdw I; dLL(x)+mvdv N’N -=--_ 
c 

---- 
dt 2 i dt j dt 2 dt z- 

~IiRj,iIi+&Z~C’i(T~)$ (6) 

i=l, j=l i=l, j=l i=l 

If the total energy of the system is to be constant, Equation 6 must be equal to zero at all times. 

This condition can be satisfied by identifying the terms that depend on a particular variable and 

setting the sum of the terms to zero. As an example, the first two terms depend on the shaft - 

angle 8 and its time derivative o. This identification gives the equation of motion for the rotor: 

i=I, j=I 

Since the rotor or the field coil is the only coil that is moving, this equation could be rewritten as 

qdw -= c N d"f,jte)I. 
dt If 

j=l de 

J’ 
(8) 

in which If is the current in the field coil and MJj(@ are the mutual inductances between the field 

coil and the armature coils that are carrying currents $. The chain rule was used to eliminate the 

time derivative inside the summation. The next two terms in Equation 6 depend on the position 

of the projectile x and its time derivative v. Setting the sum of these terms to zero gives the 

equation of motion for the projectile: 

dv I; d&(x) 

mdt=7 a5 ’ 
(9) 

in which the chain rule was again applied to eliminate the time derivative on the right-hand side. 

The last two summations in Equation 6 depend on the temperatures of each individual resistor. 



Equating like terms in the summations yields the rate that the temperature increases for each 

resistor: 

which depends on its temperature Ti. The temperature dependence of the resistance is 

Ri(T$ = Roi (1.0 - Ci [Ti - TJ), in which Roi is the resistance of the resistor at the reference 

temperature T,. and ci is the temperature coefficient. In general, the specific heat of materials 

depends on the temperature, but the specific heats for the resistors are assumed to be constant, 

C$T$ = Ci. If the values of all the variables are given at a particular time, Equations 3,8,9, and 

10 give the rate at which these variables are changing at the given time. The values of the 

variables can now be calculated for later times by numerically solving this system of first order 

differential equations. Bahder and Bruno [2] used this approach to find a system of differential 

equations for the circuit containing the rail gun, the N-th circuit in Figure 3. They replaced the 

rest of the circuits by a rotating “hard magnet,” and numerically solved the differential equations 

for a single-phase alternating current flowing through the rail gun. 

The boundary conditions for the differential equations are dictated by the action of the 

SCRs, which can be modeled by switches that are opened or closed during certain conditions. 

Using a switch as a model for an SCR ignores the voltage drop across the SCR when it is 

conducting, and the reverse current that flows through it for a brief time when it is becoming non- 

conducting. Assume that current is flowing through an SCR in the forward or positive direction, 

anode to cathode. The current will flow until the current decreases to zero and tries to flow in 

the reverse or negative direction, cathode to anode. This action is modeled by a closed switch 

that opens when the current through it decreases to zero. Now assume that the SCR is not 

conducting and there is a reverse bias voltage across the SCR. The SCR will not conduct a 

current until the reverse bias voltage reaches zero and there is a forward voltage across the SCR, 

provided that the SCR is triggered at this time. This action is modeled by an open switch that is 

closed when the voltage across the switch becomes zero. Thus, the first step in analyzing the 

compulsator circuit is to determine which SCRs are conducting and which are not and substitute 

them with a open or closed switch. After this substitution, the cornpulsator circuit then becomes 

a network of inductors and resistors that can be described by a set of differential equations. The 

solution of the differential equations (see Equation 3), the rotor (Equation 8), and the projectile 

(Equation 9) are all performed until the state of an SCR changes and is replaced by an open or 

closed switch. When the SCRs are replaced by an open or closed switch, all the currents are kept 

the same. Thus, the currents are continuous at all times in all parts of the circuit, but the time 
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derivatives of these currents are not continuous, and there will be discontinuous voltage changes 

across an opening SCR when modeled by an opening switch. Snubber circuits are usually placed 

in parallel to the SCRs to limit the voltage spikes across them and protect them from damage. 

These snubber circuits are ignored in this analysis, but there is a resistor and an inductor in series 

with each SCR to model the resistance and inductance of the connections to the SCR. 

A number of conventions were made to aid in the writing of the program. One convention 

is the use of a “phase” angle rather than the angular position of the rotor. To illustrate these 

angles, consider just one of the phase coils $1 in Figure 1, for example. Because there are six 

magnetic poles on the field winding, the magnetic flux through the phase coil will go through three 

cycles for each rotation of the rotor. One cycle is produced when an N-Pole and an S-Pole pass 

the phase coil. Thus, the shaft angle 9 is in proportion to the “phase” angle a, a = N, S/2, in 

which N, is the number of magnetic poles. The equation of motion of the rotor Equation 8 in 

terms of the phase angle is then 

This is convenient because the emphasis is on the calculation of the currents and not on the 

angular position of the rotor. 

The next convention is the choice of currents and their directions that will become the basic 

variables, and the choice of voltage loops that will generate the differential equations. Because the 

boundary conditions for these differential equations are determined by the currents through the 

SCRs, it is convenient to choose these currents. The direction of a current is selected so as to be 

positive when the SCR is conducting, which is the established standard for specifying a current 

through SCRs and diodes. Given the currents through each SCR in the compulsator, it is possible 

to find the current through any other part of the circuit by using Kirchhoff s law. The currents in 

the full wave rectifier bridge, however, are not all independent. Consider the current through 

the field coil as shown in Figure 4 when no current is flowing through the load. 

This is the mode of operation when the current through the field coil is being self-excited to 

a higher current, starting from the small seed current. Although SCRs are used in the full-wave 

rectifier bridge, they are gated so that they act as diodes and will be referred to as such. 

Furthermore, the diodes that are connected to the positive bus bar will be called “the positive 

diodes,” and the diodes that are connected to the negative bus bar will be called “‘the negative 

diodes.” The current through each diode is denoted by the symbol next to it. The numerical 
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subscript corresponds to the number labeling the phase coil, and the superscript indicates that 

the diode is either a positive diode or a negative diode. Applying Kirchhoff s law to the positive 

bus bar in the general case when all the positive diodes are conducting, the field current is If= 

17 + 1; + 1;. Applying KirchhofYs law to the negative bus bar in the general case when all the 

negative diodes are conducting, the field current must also be If= 17 + 1F + 1;. Thus, the sum of 

the currents through the positive diodes must be equal to the sum of the currents through the 

negative diodes. Once the values of five of the currents are independently chosen, there is no 

choice for the sixth current. In the specific case when some of the diodes may not be conducting, 

the current through a nonconducting diode is zero and is not a variable. Therefore, the total 

number of independent currents, N, is equal to the sum of the number of conducting positive 

diodes, N,, plus the number of conducting negative diodes, Nr, - 1, after applying Kirchhoff s 

law,orN=Np+Nn- 1. 

Positive Bus Bar 

_’ 

Negdive.B.us :Bar 

Figure 4. Schematic of the Full Wave Rectifier Bridge to Field Coil. 

Now that a convention for the independent currents and their number is established, an equal 

number of linearly independent differential equations must be found that can be solved for the time 

derivative of each current (Equation 8). A differential equation is found by summing the voltages 

across the elements that make a loop in the c-ircuit and setting their sum to zero. Because one loop 

results in one differential equation, the number of loops must be equal to the number of 

independent currents. Choosing the required number of loops in this circuit is a difficult subject 

because of the large number of possible combinations of conducting and non-conducting diodes. 

Each combination can produce a circuit with a number of possible loops. The following is a 

procedure that the program uses to choose these loops for a given combination of conducting and 
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non-conducting diodes. This procedure is motivated by the desire to treat compulsators with an 

arbitrary number of phase coils. In fact, this procedure is presented here for a compulsator with four 

phase coils. If this procedure were to be applied to a cornpulsator with three phases, some of the 

. 

steps would seem to be trivial, and it would be difficult to explain why the steps are necessary. 

Figure 5 is a partial circuit for a four-phase compulsator, which is a possible design for the exit 

criteria machine (ECM) at IAT. The same notation for the diode currents is used here as in Figure 4. 

Positive Bus Bar 

rl+. l 

2 
-+ 

4 

?+fegative.Bus Bar 

Figure 5. Four-nhase Comnulsator. 

The circuit to the load is not considered at this time and is not shown. The load circuit is easy to 

analyze and can be easily included with the loop equations, as is shown later. 

The number of possible loops through this circuit is reduced by the fact that not all 

combinations of conducting and non-conducting diodes can occur. For example, diodes 17 and 

I; cannot be conducting at the same time. Current can either be leaving the phase coil +I and be 

directed to the positive bus bar through diode f;, or the current can enter the phase coil @1 from 

the negative bus bar through diode IT, but not both at the same time. This is true for the other 

like pairs of diodes: 1; and IF, 1; and -17, and 1: and 17. It is possible, however, for both 

diodes in these pairs to be non-conducting at the same time, which means that no current is 

following through the phase coil. In addition, at least one positive diode and at least one negative 

diode must be conducting at all times so that a current can flow through the field coil. 

Using these rules, assume that diodes 17, I;, 17, and 1; are conducting and the rest are 

not conducting. After eliminating the non-conducting diodes from the circuit, it is possible to 

rearrange the elements into a simpler equivalent circuit (see Figure 6). 
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B c Pos. Bus I+ 

E F Neg. Bus Bar 

Figure 6. Conductinp Diode Eauivalent Circuit. 

In this example, there are two conducting positive diodes, N, = 2, and two conducting 

negative diodes, Nn = 2. Thus, there are three independent currents, and three loops must be 

constructed from this circuit. These loops are found in two sets. All the loops in the first set go 

through the field coil and the first negative diode on the left 1; and through a different positive 

diode. The first loop in this scheme is traced by going through the points ABCFEA, and the 

second loop is traced by the points ADCFEA. If the compulsator had more phases and more 

conducting positive diodes, each additional loop would go through one of the additional positive 

diode, through the field coil and through the first negative diode 17 for a total of N, loops. In the 

second set, all the loops go through the first positive diode on the left I/, through the field coil 

and return through a different negative diode but exclude the first negative diode 1; that was used 

in the first set. Thus, there is only one loop in this set that is traced by going through the points 

ABCFDA, including diode 17. If the cornpulsator had more phases and more conducting 

negative diodes, each additional loop would still go through the first positive diode IT, through 

the field coil, and return through one of the additional negative diode for a total of Nn-1 loops. 

The total number of loops in both sets is N,+N,- 1, which matches the number of independent 

currents. This is not the only possible scheme, but the amount of effort to write the computer 

code to automate it was reasonable. 

After the field coil current has accumulated from the small seed current during the self- 

excitation stage of operation, the SCRs to the load are allowed to conduct. This, of course, will 
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add to the number of currents or basic variables and will add to the number of loops in the circuit. 

Because of the nature of the circuit, half-wave rectifying bridge, the number of additional basic 

variables is simply the number of SCRs that are conducting to the load as shown in Figure 7. 

Figure 7. Four-Phase Load Circuit. 

Here, the field coil and its full-wave bridge have been eliminated. Current to the load is the sum 

of the currents through the SCRs Iload = 1: + 1; + 1; + 1:. This current leaves the load and 

returns to the circuit at the common connection of the phase coils through the ground. Because 

there are no diodes or SCRs in this return path, there are no additional basic variables and no 

additional conditions on the currents. The additional loops simply go through a phase coil, its 

SCR, and the load. Each loop will then have a different phase coil-SCR combination and the load 

for a total of Nl additional loops. Thus, the total number of basic variables and loops will be N = 

Nl + N, + Nn - 1, when the currents to the field coil are included. It is possible that the load 

could be connected to the phase coils by a full-wave bridge in some future cornpulsator. In this 

case, the analysis of the load circuit and the field circuit would be the same. 

This concludes the discussion of all the essential details needed to write the program. What 

have not been discussed are the details about how the program performs the task of setting up 

the differential equations to be solved. The method used by the program is illustrated by 

considering the simplified circuit of a four-phase cornpulsator (see Figure 8). 
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Positive Bus Bar 

Negative,Bus Bar 

Figure 8. Four-Phase Simnlified Circuit. 

In this case, there is current in the load, which means that the stage of operation when this circuit 

configuration occurred was after the self-excitation of the field and some time after current to the 

load has been started. The phase coil, 44, is shown even though it is not connected to anything. 

This means that all three diodes connected to it, two in the full-wave bridge and one to the load, 

are not conducting and no current is flowing through it at this time. At some later time, the 

voltage across this phase coil will become equal to the voltage on the positive bus bar, the 

negative bus bar, or the load when the appropriate diodes become conducting and change the 

configuration of the circuit. Thus, it is necessary to calculate the voltage output of any open 

phase coil and to test its value. 

The method that is used by the program to set up the differential equations is based on 

matrix algebra. One matrix embodies Kirchhoff s law, which produces a list of currents in a given 

order when it is multiplied with a list of the basic variables or diode currents. Another matrix 

performs the summation of the voltages around the required number of loops. Using these 

matrices and others, one can construct a matrix that will give a list of the time derivative of the 

diode currents when it is multiplied by a list of the diode currents as in Equation 3. Indeed, the 

steps leading to Equation 3 are equivalent to the steps taken here. The only difference is that the 

matrix for the Kirchhoff s law and the matrix for the summation~of the voltage around the circuit 
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loops are included here. This is the most complicated part of the program. The other parts of 

the program are simple manipulation, sorting, and bookkeeping of the data. Thus, this part of the 

program is discussed by using the circuit in Figure 8 as an example and presenting all the matrices 

in detail. 

The matrix for Kirchhoff s law is constructed in two steps. This first step is to list the 

diode currents that are not zero in a specific order. This order starts with the first phase coil that 

is conducting to the positive bus bar, to the load, or both ($1 in Figure 8). In this case, there are 

two conducting diodes, I;’ and 1;. Of these two currents, the one conducting to the positive bus 

bar 17 appears first, followed by the current to the load 1;. If either one of these currents were 

zero, it would be eliminated from the list, leaving the other as the first on the list. As an example, 

if 1; were zero or not conducting, it would be eliminated and 1: would be the first entry. 

Conversely, if 1: were zero, it would be eliminated and IT would be the first entry. The next 

two possible entries would be the next phase coil that is conducting to the positive bus bar or the 

load. The source of the next entry could have been $4 if one or both of its diodes,. 1: or 1:, were 

conducting. Thus, the next two entries could have been 1:, followed by 1: if both diodes were 

conducting, or just 1; if it was the only conducting diode, or just 1: if it was the only conducting 

diode. The next set of entries is simply the negative diodes listed from left to right in Figure 8, 

17 and 1;. Using these four diode currents, the current through any other part of the circuit can 

be found. Note that these currents are not independent and one of them must eventually be 

eliminated, but for now, assume that they are independent. Using Kirchhoff s law, a list of 

currents through the rest of the circuit is found by multiplying a matrix with the list of diode 

currents (see Equation 12). 

The list of currents on the left is also in a specific order. First are the currents through the 

phase coils, followed by the current through the field coil. The next set of entries is the same as 

the list of currents on the right of the matrix. The last entry is the load current, if any diode is 

conducting to the load. The load current will not be in the list when there is no load current. 

Given the conducting state of all the diodes, the program constructs this matrix. There is one 

complication: the direction for a positive current through a phase coil is directed away from the 

common connecting point that must be adopted so that the sign of the mutual inductance between 

the phase coils is to be consistent with the current directions. If a positive current is flowing 

through the phase coil $1, for example, the magnetic flux through another coil will increase when 

the mutual inductance between them is positive or will decrease when it is negative. Likewise, a 

negative current through $1 will decrease the magnetic flux through another coil when the coil’s 

mutual inductance is positive and will increase the magnetic flux when it is negative. Thus, the 
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direction of the positive current must be specified when the mutual inductance is measured. The 

next step is to eliminate one of the diode currents. The convention adopted here is to eliminate 

the first negative diode, IT, and use the other diode currents as the basic variables. 

= 

1100 

0 O-I 0 

0 0 0 -1 

100 0 

100 0 

010 0 

0010 

000 1 

010 0 

IT is eliminated by using the following matrix equation: 

= 
I 1 01 1 00 0 0 -1 1 0 0 I x 

< 

. (12) 

(13) 

Multiplying the two matrices together, the currents through the rest of the circuit in terms of the 

basic variables are 
$1. 
I@ 
143 

If 

Ii+ 

I! 

Ii 

4 

I1 

= 

I I 0‘ 
-1 0 I 

0 O-l 

I 0 0 

I 0 0 

01 0 

I 0 -1 

00 I 

.o 1 0 

X (14) 

This relationship also holds for the time derivative of the currents. 
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Now that the current and the time derivative of the currents are known in all parts of the 

circuit, it is now possible to calculate the voltage drop across any coil. .Each inductor in Figure 8 

is in series with a resistor that represents the resistance of the windings of the coil. Therefore, 

the voltage drop across any coil is V = 6 + RI when the voltage is measured in the direction of a 

positive current. If the coil is magnetically coupled to other coils, such as the phase coils, the 

time derivative of the magnetic flux in the coil is found by taking the time derivative of Equation 1 

to give the voltage drop across the coil as 

in which ii is the time derivative of a current and ~i,j is the time derivative of the mutual 

inductance. If the coil is not magnetically coupled to another coil, its voltage drop would simply 

be V = RI + Li + LI in which L is the self-inductance of the coil. Normally, the self-inductance 

of a coil will not change with time, but the rail gun and other loads may have an inductance that 

will change with time. Explicitly, Equation 15 for the circuit in Figure 8 is shown in Equation 16 
in which the second 9x9 matrix is the sum of the matrix, ~i,j, and the resistance matrix, Ri,j, 

which has the resistance of the coils on its diagonal. These two matrices fit well together because 
most of the diagonal elements of n;l,,j are zero and the resistance matrix Rjj is diagonal. In 

Equation 16, v is the velocity of the projectile, L ’ is the inductance gradient of the rail gun, cu is 

the angular velocity of the phase angle, and the M’s are the derivatives of the mutual inductance 

between the phase coils and the field coil with respect to the phase angle. 

The next step is to construct a matrix that will sum the voltage drops around the loops in 

the circuit and make the sum be zero: 
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0 0 0 0 0 0 0 0 R,+vL' 



The loops are the ones that were described before. The first row of the matrix sums the voltages 

in the loop that goes through the first phase coil, $1, the first positive diode, I,?, the field coil, If, 

the first negative diode, 17, and its phase coil, h. The second row of the matrix sums the 

voltages in the loop that goes through the first phase coil, $1, the first positive diode, 17, the 

field coil, If, the second negative diode, 1;) and its phase coil, &. The last row of the matrix 

sums the loop that goes through the first phase coil, $1, the first diode to the load, 1!, and the 

load, Il. 

The final step is to solve the above equations for the time derivatives of the basic variables. 

Instead of using the explicit matrices and vectors, the above equations are rewritten in the usual 

matrix notation. Starting with Equation 17 for the sums of the voltage drops around the loops, 

we have Ln,i Vi = 0, in which .P$ is the matrix that performs the summations. Substitute this 

into Equation 15 in matrix notation, Vi = Mi,,~~ + ( Ri,M + &fi,,)9m, and the equation becomes 

&tz,i Mi,tn4w + ln,i (Ri,m + n;li,tn)l;lm = 0, in which 9m is the list of all the currents. Now let qm 

= XmjIj and q* = XMiii in which Xmj is the Kirchhoff matrix in Equation 14 and Ij is the list of 

the independent basic variables. With this substitution, it is now possible to solve for ij to find 

an equation that is equivalent to Equation 3: 

This equation, the equation of motion of the rotor (Equation 13), the equation of motion of the 

projectile (Equation 9), and the enthalpy equation for the resistors (Equation 10) are all used by a 

fourth order Runge-Kutta method [2] to calculate the values of all the basic variables at some 

future time. These results are tested for a change in the conducting state of a diode. If a diode 

has become conducting or non-conducting, then a new Kirchhoff matrix, a new loop matrix, and 

an new list of independent currents are constructed and used until the conducting state of a diode 

again changes. 

3. COMPUTER PROGRAM 

The discussion of the program that is presented in Appendix A starts with a “header” 

section where the important variables, constants, functions, and structures are either declared or 

defined. This is followed by a discussion of the “main” section. Subroutines that are important 

for reporting the results are also discussed. A user should be able to edit these sections and use 

the program for his or her purposes after reading this part. This approach, however, will omit a 

discussion of some very important subroutines because they do not appear explicitly in this part 
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of the program, but they will be covered in the next section. The program to be discussed is 

listed in the appendix and is referred to by line number or by quoting the statement. The line 

numbers are for reference only and are not part of the C Language. All the parameters in the 

header section are taken directly or derived from Kitzmiller.[3] 

All the parameters that describe a cornpulsator are defined at the beginning of the program. 

“6:#define PHASE 3” defines the number of phases and “7:#define POLES 6” defines the number 

of poles of the field coil. “9:#define MAX 11” is a maximum number that is used for 

dimensioning arrays which is equal to the number of SCRs plus one for the field current and plus 

one for the load current or three times the number of phases plus two. “lO:#define TREF 20.0” 

is the reference temperature in degrees Celsius. Statement 11 defines a structure tagged “resistor” 

which holds the parameters for a resistor. “rO ” is the resistance at the reference temperature 

“TREF”. “c” is the temperature coefficient for the resistance. “cp” is the heat capacity or the 

specific heat of the resistor. “mass” is the mass of the resistor. Kitzmiller [3] does not give the 

masses for the resistors, but he does give the resistivity, Ye, the cross-sectional area, A, the 

density, s, and the resistance at ambient temperature, r0 , that could be used to find the mass 

m oA2ro _ 

PO 
(19) 

Next is a list of all the resistive elements in the cornpulsator, starting with Statement 12 which 

defines a structure with the parameters for the field coil resistance. Statement 13 defines the 

common parameters for each resistor in series with an SCR that is connected to the positive bus 

bar “Pos. Bus Bar” in Figure 2. Statement 14 lists the common parameters for the resistors in 

series with the SCRs that are connected to the negative bus bar “Neg. Bus Bar,” and Statement 15 

contains the common parameters for the resistors in series with the SCRs that are connected to 

the “Load Bus Bar.” The values for “r. s’l of the resistors were taken from Kitzmiller [3], but 

the rest of the parameters in Statements 13 through 15 were derived by assuming that the 

connections between the cornpulsator and the SCRs are made of aluminum, which establishes the 

temperature coefficient c and the specific heat cp. The masses are a rough guess. Fortunately, 

these masses are not critical to the final results as long as the temperature rise in these resistors is 

small compared to that of the field coil and the armature coils. Statement 16 stores the 

parameters for the resistance of the phase coils in an array. 

The two-dimensional array in Statement 17 defines the self and mutual inductances of the 

armature. The diagonal elements are the self-inductance of a phase coil while the off-diagonal 

elements are the mutual inductances between the pairs of phase eoils. As an example, the self 
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inductance of the phase coil, $1, identified by the starting index 0, is the element “mut[O][O]” in 

the array or l.l6e-06 H, and the self inductance of & is the element “mut[ l][ 11” in the array or 

l.l2e-06 H. Thus, the mutual inductance between these two phase coils is the element 

“mut[O] [ 11” or, equivalently, “mut[ l][O]” which is -4.72e-07 H. The next array in Statement 18 

contains the maximum mutual inductance between the field coil and each of the phase coils. If the 

field coil and the phase coils had perfect symmetry, the phase shift between each phase would be 

120” of the phase angle. Because a real compulsator is not perfectly symmetrical, the phase 

shifts are slightly different. The phase shift angles are tabulated in the array “os[]” in Statement 

19 where the angles are in radians. The first entry in this array is always zero, since this phase is 

taken to be the reference phase from which all other phases are measured. The next entry is then 

the phase shift for the next coil, etc. The next four statements, 20 through 23, are the inductances 

of the field coil “hfield,” the inductance to the SCRs that are connected to the positive bus bar 

“hpscr,” the inductance to the SCRs that are connected to the negative bus bar “hnscr,” and the 

inductance to the SCRs that are connected to the load bus bar “hlscr.” Statement 24 is the 

moment of inertia of the rotor scaled to the phase angle (Equation 13). This concludes the 

section that contains all the constants for the compulsator. 

The next section contains constants and functions that model the load of the compulsator. 

In this case, the load is a 3.0-m-long rail gun launching a 0.32-kg projectile. The “mass” in 

Statement 25 is double the mass of the projectile. The function defined by Statements 26 

through 28 is the load inductance as a function of the position of the projectile in the rail gun. 

Any stray inductance between the output of the compulsator and the breach of the rail gun is 

included in this function. The next function “dhdx” in Statements 29 through 3 1 is the derivative 

of “hload.” Statements 32 through 34 are the load resistance as a function of the position of the 

projectile and include the resistance between the output of the compulsator and the breach of the 

rail gun. All the constants and all the functions that model the compulsator and the rail gun are 

now defined. Other compulsators, rail guns, or loads can be modeled by editing the Statements 6 

through 34. No further editing is needed. In some rail guns, a circuit is placed across the muzzle 

to limit the voltage at the muzzle or to recover some of the energy stored in the rail gun after the 

projectile exits. Some of these circuits may be modeled by these functions, but if the circuit 

contains a capacitor then the program must be modified. 

Statements 49 through 113 define various structures and variables that are used by 

procedures that are discussed in a later section. The structures between Statements 50 and 55 are 

important for printing the results of the calculations and are discussed here. One of the features 

of the C Language is the ability to group variables that have some common feature into one 
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structure. As an example, Statement 50 groups all the mechanical variables into a structure called 

“mechanical.” These variables are the phase angle “th,” the time derivative of the phase angle or 

the angular frequency “w,” the position of the projectile “x, ” and the velocity of the projectile 

“v.” The next set or structure of variables, Statement 5 1, is the temperatures of all the resistive 

elements: the SCRs to the positive bus bar ‘prec,” the SCRs to the negative bus bar “nrec,” the 

SCRs to the load “lrec,” the phase coils “phs,” and the field coil “field,” All the variables in this 

structure are indexed except for “field.” The index of these variables refers to an phase coil 

labeled with the index. As an example, prec[O], nrec[O], and lrec[O] are the temperatures of the 

SCRs that are connected to the phase coil $1 whose temperature is stored in phs[O]. The 

“config” structure in Statement 52 contains logical variables that give the conducting state of each 

SCR which is “TRUE” if the SCR is conducting or “FALSE” if the SCR is not conducting. The 

names of the variables in this structure are the same as the ones in the “thermal” structure. Thus, 

the like variables in both of these structures refer to the same SCR when the indices of all these 

variables are the same. The variable “load” in Statement 52 is special. When this variable is 

FALSE, all the SCRs connected to the load “hec” are forbidden to become conductive even when 

the conditions for becoming conductive are satisfied. Thus, the load is disconnected from the 

compulsator and the compulsator is in the self-excitation mode. When it is set to TRUE, all the 

load SCRs that have a forward voltage are immediately closed. Afterward, any nonconducting 

load SCR is allowed to become conductive when its forward voltage becomes positive. Thus, the 

compulsator is in the launch mode when the projectile is being accelerated down the rail gun. 

This variable is returned to FALSE at some later time when any SCR that was conducting while 

“load” was TRUE remains conducting and will continue to conduct until its current reverses and 

becomes nonconductive. Once the SCR becomes nonconductive, it is forbidden to become 

conductive again. Thus, the current to the load is being shut off as the conducting SCRs become . 

nonconducting and are not being gated back on. Statement 53 defines a structure for the currents 

in the compulsator using the same variable names used in the previous structures. 

“prec[PHASE]” are the currents through the SCRs that are connected to the positive bus bar, 

“nrec[PHASE]” are the currents through the SCRs connected to the negative bus bar, and 

“lrec[PHASE]” are the currents through the SCRs connected to the load. The field coil current 

and the load current are included for convenience. All these structures are then united into a 

single structure, Statement 54, which is defined as the state of the compulsator. The final 

structure in the header section, Statement 55, contains the voltages at various points in the circuit 

relative to the ground point in Figure 2: the voltage across the phase coil “vphs,” the voltage of 

the positive bus bar “vplus,” the voltage of the negative bus bar “vminus,” and the voltage across 

the load “vload,” which includes the resistance and inductance of connections between the output 
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terminals and the breach of the rail gun. These voltages are used to determine if a nonconducting 

SCR becomes conducting. 

This completes the discussion of the header section of the program. The main part of the 

program, Statements 56 through 15 1, organizes the computation by calling the procedures in 

proper order and analyzing the results. These procedures are discussed only in general terms in 

this section, along with the discussion of the statements. Statements 78 through 97 prompt the 

user to enter information for the simulation, starting with the name of the output file. Next is the 

initial current in the field coil “seed” which seeds the magnetic field for self-excitation and the 

initial revolutions per minute of the rotor. The ambient temperature “tamb” and time step 

between calculations “tstep” are entered next. “tclose” is the time when the SCRs are permitted 

to conduct to the load. “topen” is the time when the conducting SCRs to the load are forbidden to 

conduct again after they have become nonconducting. “tend” is the maximum time that the 

calculation is allowed to continue. Because “tstep” is usually much smaller than “tend,” it takes a 

large number of steps to reach “tend.” If the results of the calculations were to be written to a file 

at each step, the resulting file could be large and contain too much information to be useful. The 

“Report Skip = ” asks for the number of steps that will skip the writing of the results to the file. 

The first procedure to be called is “initiate” in Statement 101 and is defined in Statements 

154 through 198 which fill the state structure named “yo” with the initial values of all the 

variables at the time the seed current through the field coil has been established. This procedure 

does not model the discharge of the auxiliary capacitor bank into the field coil. Instead, the final 

seed current is taken as a given value. To determine the values for the rest of the variables, the 

voltages of the phase coils are found by assuming that there is no current in them, but there is a 

steady current in the field coil. These voltages are searched for a maximum voltage magnitude 

between a pair of phase coils, Statements 180 through 188. Once the pair of phase coils are 

found, the phase angle is set so that the voltage difference across the phase coils is at its peak 

value. The SCRs of the positive phase coil, Statement 189, and the negative phase coil, 

Statement 192, are made conductive. The current through the conducting diodes is set to be equal 

to the seed current in Statements 190 and 193. A procedure is then called, statement 198, that 

sets up the “bookkeeping” for the calculations. The time derivatives of all the variables in the 

structure “yo” are calculated by calling the “deriv” procedure in Statement 102 and the results are 

stored in the “dyo” structure which primes the numerical method for solving the differential 

equations. The initial conditions are written to the output file by the “report” procedure. 
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The “advance” procedure in Statement 105 uses the fourth order Runge-Kutta method “rk4” 

to advance the values in both structures to a later time specified by “tstep.” The procedure tests 

for a change in the conducting state of the SCRs. If there is a change, the procedure performs a 

sub-step to the time when the change occurs. It then analyzes the conditions of each SCR and 

changes its conducting state accordingly and advances the solution to the end of the time step. 

The values of all the variables at the end of the time step are returned in the same structures. 

This procedure is repeatedly called until the time for the closing of the load SCRs. 

The “dump” procedure in Statement 111 writes all the values in the structure to a special 

file for diagnosis, or the data may be used to pick up the simulation for later times. One possible 

use is to dump the data just before a load is connected to the cornpulsator. The data can then be 

used to simulate various rail gun or other loads without recalculating the self-excitation mode of 

the cornpulsator. This program does not have this feature. 

Statements 113 through 142 are a work in progress and are subject to change. When the 

SCRs to the load are closed, there are significant changes in the time derivatives of the currents, 

accompanied by a change in the voltages across all the coils. Some combination of the 

nonconducting SCRs will become conductive under these new conditions. The problem is finding 

the correct combination. The strategy used here is to close all the load SCRs that could conduct 

to the load and to keep the conducting state of the rest of the SCRs the same. Using this 

configuration, the currents and voltages are calculated for a time step later, Statement 124, when 

the state of the SCRs is examined by the “check” procedure in Statement 132 and a new 

combination is suggested. The currents are then recalculated, using the original currents and the 

new combination, and checked again. This is repeated until the currents and the voltages are 

consistent with the conducting state of the SCRs. If a consistent configuration is not found 

within three attempts, the program will signal a “reconfiguration error” in Statement 127 and will 

terminate. Reconfiguration errors may occur with this strategy. When they do occur, it is 

common practice to change the closing time of the SCRs “tclose”‘by at least a time step or change 

the time step and run the program again. Other more robust strategies are now being considered 

and tested. Statements 144 through 151 cover the time that the cornpulsator is driving the load. 

When the time “t” is greater than the opening time ‘topen, ” Statement 14.5, the load SCRs are not 

allowed to become conductive by setting “yo->load” to “FALSE.” The program again has some 

difficulties when the last conducting SCR to the load becomes nonconducting. This sudden 

transition from a conducting state to a nonconducting state again causes a large change in the time 

derivatives of the currents, accompanied by large changes in voltages. Finding the correct 
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conducting states of the SCRs after this time is not as important because this is usually the end 

of the simulation. 

The “report” procedure, Statements 152 through 153, can be modified to produce an output 

file of any of the variables in the structure “s” in any format or to do other calculations. In this 

case, the procedure simply reports the time, the field and the load currents. 

4. SUBROUTINES 

The discussions in the previous section of some of the subroutines were limited to the 

necessary details to edit the program for other cornpulsators and rail guns and how to report the 

results in a desirable format. These subroutines are presented again with further details, and the 

details of other subroutines not explicitly used in the main program are also given here. This 

should allow one to modify them to include features that were ignored: the presence of 

compensating windings, reverse recovery current of the SC%, a gating schedule for the SCRs, etc. 

The first procedure-to be discussed is “setup,” which must be called as soon as the 

conducting states of the diodes have been determined or when there is any change in the 

conducting states of the diodes. Given the conducting state of the SCRs in the form of the 

“config” structure, “setup” first constructs various arrays of indices, Statements 199 through 

293, that are used to construct the Kirchhoff matrix and the matrix that sums the voltage drops in 

the circuit, “loop.” These arrays are also used for various bookkeeping tasks. One task is to 

retrieve the currents stored in a “state” structure and to form a list of the basic variables of the 

differential equations. Another task is to do the reverse, i.e., store a list of the basic variables or 

their time derivatives back into the “state” structure. As an example, the values for these arrays 

and indices in the following discussion are for the state of conduction of the SCRs in Figure 8. 

“nt_d” is the total number of conducting diodes or SCRs, which is four, and “np_d” is the 

number of diodes conducting to the positive bus bar and to the load, which is two. The array 

“diode” is a map between an assigned number for a conducting diode (the index of the array) and 

the number of the phase coil that it is connected to (the value of its element). Because the 

numbering in the C language starts with zero, the array element diode[O] = 0 means that diode #O 

is connected to phase coil #l in Figure 8. Therefore, diode[O] = 0, diode[l] = 0, diode[2] = 1, and 

diode[3] = 2 are referring to diodes 17, I:, 1j’, and I;, respectively, in Figure 8. Associated 

with this array are two other arrays, “b_field” and “b-load.” A “TRUE” value in the “b-field” 

array means that the diode is conducting to or from the field coil. A “TRUE” value in the 

“b-load” array means that the diode is conducting to the load. Thus, the “b_field” array has the 
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following entries: b_field[O] = TRUE, b_field[l] = FALSE, b_field[2] = TRUE, and 

b_field[3] = TRUE. The “b-load” array is the complement of the “b-field” array: b_load[O] 

= FALSE, b_load[l] = TRUE, b_load[2] = FALSE, and b_load[3] = FALSE. The “index” array 

is a list of the phase coil numbers that are conducting a current. Any phase coil with no current 

will not be listed. Thus, index[O] = 0, index[l] = 1, and index[2] = 2. “ntqhs” is the total 

number of phase coils that are carrying a current, which is three in this example. “npqhs” is the 

number of phase coils that are either conducting current to the load or to the positive bus bar, 

which means that npqhs = 1. 

Statements 234 through 239 test for a phase coil having a load diode and a negative diode, 

the one connected to the negative bus bar, which are conducting at the same time. This condition 

occurs when the current through an inductive load is decreasing, which may cause the voltage 

across the load to be less than the voltage of the negative bus bar, resulting in a forward voltage 

bias on a load diode. Because this program assumes that all the SCRs are gated to act as diodes, it 

is assumed that the load diode will act as a diode, even though it is actually an SCR and could be 

nonconducting during these circumstances. 

“Setup” then constructs the Kirchhoff s matrix, “kir’-’ in Statements 241 through 264, and 

the loop matrix, “loop” in Statements 265 through 293 that are declared in Statement 39. 

Equation 14 shows an example of the Kirchhoff matrix, and Equation 17 shows an example of the 

“loop” matrix. 

The “advance” procedure, Statements 294 through 344, advances the values of the state 

variables stored in the structure “y” and their time derivatives “dy” by a time step “ts.” The 

first procedure that is called uses a Runge-Kutta method, “rk4,” in Statement 308 to calculate the 

new state variables “yn” from the old state variables “y,” its derivatives “dy,” and a time step 

‘YS. ” “rk4” does not return the time derivative of the new state variables, but they are calculated 

by calling “deriv” in statement 309. The next procedure to be called is “check” in the conditional 

part of statement 3 10, which tests for a change in the conducting state of the diodes. If it detects 

a change in the conducting state of a diode, it returns a “TRUE” value, and the body of the “if’ 

statement will then be executed. This procedure also returns a new configuration for the diodes 

“c-n” and an estimate of the time “dt” when the change of the configuration had occurred in units 

of the time step “ts.” A new set of state variables and their derivatives is found for this 

approximate time, Statements 3 15 and 3 16, which are copied to the original structures, 

Statements 3 17 and 3 18. The new configuration that was found when the “check” procedure was 

called in Statement 411 is adopted, and a new set of state variables and their derivatives is found 
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for a full time step after the approximate time, Statements 3 19 through 332, and the configuration 

is once again checked in Statement 333. If necessary, Statements 323 through 333 will be 

repeated at most three times or until the “check” subroutine does not report a change in the 

conducting states of the diodes. If these statements are repeated three times, it is assumed that 

the conducting states of the diodes cannot be found. The program then dumps the data and 

terminates. This repetition covers the possibility that the conducting state of more than one 

diode may have changed during this time step. Even though the “check” procedure tests for a 

change in the conducting state of all the diodes, it does so under the assumption that the 

conducting state of all the diodes does not change. All this procedure does is to test if a diode has 

a reverse current or a forward voltage bias. It does not consider the fact that a change in the 

conducting state of a diode will cause a discontinuous change in the current derivatives and a 

discontinuous change in the voltages, which may change the test conditions. Furthermore, if 

more than one diode changes its conducting state at different times during the time step, only the 

earliest time is used. In spite of this fact, a consistent configuration can be found by repeating 

the calculation and testing if the configuration needs changing. Once a new consistent 

configuration is found, it is adopted (Statements 334 through 340), and the solution is continued 

to the end of the present time step (Statements 341 and 342). The new set of state variables and 

their derivatives is then copied to the original structures before returning to the main program. 

To test for a change in the conducting state of the diodes, the “check” procedure, 

Statements 623 through 678, first calls the “volts” procedure in Statement 629. This procedure 

calculates the voltages across each phase coil, the positive bus bar, the negative bus bar, and the 

load at the beginning of the time step. It is called again in Statement 630 to calculate these 

voltages at the end of the time step. After some variables are initialized, Statements 631 through 

633, the diodes on each phase coil are tested, Statements. 638 through 676. The original 

conducting state of the diodes for a given phase coil is copied to another in Statements 635 

through 637 which is returned at the end of the procedure. The first diode to be examined is the 

one connected to the positive bus bar, Statements 638 through 643. If it is conducting, it is then 

tested for a negative current statement 638. If the current is negative, the “test” flag is set to 

“TRUE,” signaling that a change of any kind has been detected. The approximate time for a zero 

current through the diode is found by linearly interpolating the diode current at the beginning of 

the time step “so->a.prec[i]” and the current at the end of the time step “sn->a.prec[i], Statement 

640. The state of the diode is set to “FALSE,” Statement 641, and its current is set to zero, 

Statement 642. This estimated time is tested for a minimum. If it is less than the minimum time 

so far, it becomes the new minimum, Statement 643. If this diode was not conducting, it is tested 

for a forward bias voltage, Statement 644. If it is forward biased, the “test” flag is set to 
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“TRUE” in Statement 645. The approximate time that the voltage across the diode is zero is 

estimated by linearly interpolating the voltages of the phase coil “vo.phs[i]” and the positive bus 

bar “vo.plus” at the beginning of the time step, and the voltages of the phase coil “vn.phs[i]” and 

the positive bus bar “vn.vplus” at the end of the time step. The conducting state of the diode is 

set to “TRUE” and its current is set to zero. If the estimated time is less than the minimum time 

until this point, it becomes the new minimum. The conducting state of the diode to the negative 

bus bar and the conducting state of the diode to the load are examined and recorded in a similar 

manner. At the end, the structure “cn” has all the changes in the conducting states of the diodes 

and is accessible to the calling program, as well as the minimum time when a change had occurred. 

The “check” procedure returns the value of “test” which is “TRUE” when there is any change or 

“FALSE” when there is no change in the conducting state of a diode. 

The “deriv” procedure, Statements 462 through 604, calculates the time derivatives of all the 

state variables that have been a major-subject of this report, and in which many of the equations are 

encoded. Statements 477 through 483 calculate the derivatives of the mechanical variables, and 

Statements 485 through 489 calculate the rate at which the temperature of the resistors increases 

with time. The rest of the procedure calculates the derivatives of the currents. Starting with 

Statement 490, the currents that will be the basic variables are recalled from the state structure and 

organized into a vector “di.” After various matrices are set to zero, Statements 495 through 604, the 

matrices that were illustrated in the previous sections are constructed. The first matrix to be 

constructed is “rmf,” Statements 5 13 through 534, which contains the resistances of all the 

elements, the products of the angular frequency, and the gradient of the mutual inductance between 

the phase coils and the field coil and the product of the velocity of the projectile and the inductance 

gradient of the load. An example of this matrix is the second 9x9 matrix in Equation 16. This matrix 

is then multiplied on the right by the Kirchhoff s matrix “kir” and on the left by the “loop” matrix. 

The resulting matrix “I-” is the L’~,~ ( Ri,m + tii,,)~m,k term in Equation 18. A matrix of the 

inductances of the elements “temp” is constructed in Statements 544 through 564. An example of 

this matrix is the first 9x9 matrix in Equation 16. It, too, is multiplied on the right by “kir” and on 

the left by “loop.” The inverse of the resulting matrix “h” is found by calling a matrix inverting 

procedure “minv” to give the ( L’~,~M~,~~,,)-’ t erm in Equation 18. The matrix “h,” the matrix 

“r,” and the vector of the basic variables “di” are multiplied together in Statements 575 through 580 

to yield the time derivative of the basic variables “di-dot.” This vector, “di-dot,” is multiplied by 

the “kir,” Statements 588 through 591, to generate a vector of the derivatives of all the currents in 

the circuit. The values in this vector are then stored into the appropriate locations in the structure 
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“ds,” Statements 592 through 604. This results in a structure of the same type as the data structure 

“s,” but values stored in the returned structure “ds” contain the time derivative of the variables. 

Using these variables and their time derivatives at a given time, “rk4” calculates the 

variables at a later time as specified by the time step. This procedure uses the Euler method, 

which is most elementary method for numerically solving first order differential equations of the 

form y’ = f(t,y), in which y’ is the derivative of y with respect to t. The Euler method is simply 

y(t+h) = y(t) + h F&y(t)) in which h is the time step. This method is encoded in Statements 

474 through 536. Because the Euler method is only accurate to the first order of the step size, it 

is seldom used by itself. It is a basis, however, for other methods that are accurate to higher 

orders. One method is the fourth order Runge-Kutta which is accurate to the fourth order. There 

are other Runge-Kutta methods that are accurate to higher orders, but the fourth order Runge- 

Kutta has proved to be economical and practical in practice. This Runge-Kutta [4], Statements 

375 through 423, uses the Euler method, Statements 424 through 442, to find the derivatives of y 

at four points: 

kb = F t,+;,y,,+;k, 

kc = F t,+;,Y,+;& 
(20) 

kd = F(fn + h, y, + hk,) 

A weighed average of these derivatives is used to estimate the value of yn+l at the time tn + h: 

(21) 

The “volts” procedure, Statements 605 through 622, calculates the voltages at various points in 

the circuit. Statements 612 through 615 find the voltages across each phase coil with respect to 

the central ground point, even when a phase coil may not be carrying a current. Statement 616 

calculates the voltage across the load. The voltage of the positive bus bar is found by first 

searching for a diode that is conducting a current to it, calculating the voltage drop across the 

diode, and subtracting it from the voltage across its phase coil (Statements 617 through 619). A 

similar procedure is used to determine the voltage of the negative bus bar (Statements 620 

through 622). The “check” procedure uses these results to test for a forward bias voltage on a 

nonconducting diode. 
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5. DISCUSSION AND RESULTS 

Although this program produces results, it is a work in progress in which some areas can be 

improved. One area of improvement is the testing for the conducting state of the SCRs, especially 

when the load current just starts and when the load current ends. Although the present strategy 

works for this cornpulsator, it may need improvement for cornpulsators that have more phase 

coils. When there are more phase coils, there are more SCRs, which means there is an increased 

chance that two or more SCRs are changing state at the same time or very close to the same time. 

The present strategy may not resolve this situation. Another possible area for improvement is to 

use a Runge-Kutta routine that changes the step size and tests the quality of the solution. When 

these routines detect that the variables are slowly changing during a time step by some criteria, 

they will increase the next step size, and they will also decrease the next step size when the 

variables are changing too much. The routines are usually faster than the ones that keep the same 

time step, because they quickly step over regions where the variables are not changing 

significantly, while the fixed step size routine will simply step through these regions. These 

routines that do vary the step size assume that the transition from the regions where the variables 

are changing slowly to the regions where the variables are changing quickly or vice versa is 

continuous and detectable. The currents in the cornpulsator, however, do not have this property. 

Because the currents vary smoothly when the conducting state of the diodes does not change, 

these routines may continue to increase the step size during this time. By the time a diode does 

change its conducting state and the currents are changed very quickly at some unforeseen time, the 

step size may be large. These routines may then spend a lot of effort in decreasing the step size 

and testing when the currents have suddenly started to quickly change. This effort may cancel the 

advantage of changing the step size. Thus, a fixed time step is used in this program. Other 

Runge-Kutta routines test the quality of the solution, which is desirable. Because this program 

does not have an intrinsic test for the quality of the solution, it should be repeated several times 

with decreasing step sizes and the results examined. If the results do not significantly change 

when the step size is decreased, then the quality of the results is good. 

Because the SCRs are modeled by an open or closed switch, the characteristics of the SCRs 

are ignored. These characteristics are the voltage drop across the SCRs when they are 

conducting, and the recovery characteristics when the current through them is starting to reverse. 

If is assumed that the characteristics of the SCRs should not have a significant effect on the 

performance of the cornpulsator, then the reason for including them would be to study other 

aspects of the cornpulsator: voltage transits, snubber circuits, etc. Including these characteristics 

may solve the configuration problem in this program because they will make the discontinuous 
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change of an SCR in a conducting state to a nonconducting state into a continuous transition. By 

taking small time steps, this transition may allow “rk4” to follow a solution through this period 

and determine the conducting state of all the other SCRs. 

If a compulsator is powering a rail gun, it may be desirable to shape or control the current 

pulse so that the muzzle velocity of the projectile is at a maximum without over-stressing the rail 

gun. By gating the SCRs to the load at different times, it is possible to change the shape of the 

current pulse. This program does not have this pulse-shaping capability, but it could be modified 

to use a gating schedule for the load SCRs and find the resulting current pulse. 

The program was validated in two ways. First, the total energy of the system, Equation 4, 

was calculated in a previous version, and it was observed that the total energy was conserved. 

Second, the results of the program agree very well with the results reported in Kitzmiller [3]. As 

an example, one of the results is duplicated with the following prompted input: 

Output File: results.out 
Field current (a) = 6000.0 
Initial rpm = 10000.0 
Temperature (C) = 20.0 
Time step = 5.0e-06 
Close Time = 0.0756 
Open Time = 0.0796 
End Time = 0.0820 
Report Skip = 20 
Report Skip = 20 

The program run time is about 13 seconds on a loo-MHz PentiurnTM when compiled with Visual 

C++@ 5.0 when the “release’? configuration was selected. The field coil current during the self- 

excitation is compared to the results of Kitzmiller [3] (the squares in Figure 9) after 4 ms was 

subtracted from K&miller’s time scale. 

Four milliseconds is the approximate time for the capacitor bank to establish the seed 

current in the field coil which was included in Kitzmiller’s graphs. The rail gun currents are 

compared in Figure 10 for the time after the current starts. 
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Figure 10. Rail Gun Current. 

The closing time was varied until there was a good agreement. This is necessary because 

the initial conditions of the two calculations are not the same. In the present calculation, the 

initial conditions were chosen so that an initial phase angle can be determined. Kitzmiller, 

however, use the initial conditions for a model of the auxiliary capacitor bank that establishes the 

seed current in the field coil. Thus, this liberty was taken to produce this agreement. The 
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present calculation gives the final velocity of the projectile as 1248 m/s, while Kitzrniller reports 

a final velocity of 1200 m/s. Another point of comparison is the field current. I&miller fmds 

that the field current had reached 28 kilo-amperes (kA) in 80 ms. The present calculation finds 

that the field current had reached 28 kA in about 76 ms. This difference may be attributable to 

the different ways in which the two programs solve differential equations. Still, this program has 

nearly reproduced the results of other cases given in Kitzmiller’s report, showing that the two 

programs are close equivalents. This program is now being used to study the SSFTP 

compulsator as a power supply for coil guns and electromagnetic armor. The results of this 

study will be given in future reports. 
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1: 
2: . 
3: 
4: 
5: . 

6: 

7: 
8: 
9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 
20: 
21: 
22: 

. 23: 
24: 

25: const double 

COMPUTER PROGRAM 

#include <stdio.h> 
#include <math-h> 
#include <stdlib.h> 
FILE *fp; 
#define PI 3.141592654 
/* Version: This version keeps track of the */ 
/* temperatures of all the resistors. */ 
/* --Start of parameters & function block--------*/ 
// SSFTP compulsator driving a rail-gun 
// Number of phases 
#define PHASE 3 
// Number of poles 
#define POLE 6 

// MAX = 3*PHASE + 2 
#define MAX 11 
// Reference temperature for the resistors 
#define TREF 20.0 
struct resistor { 

double ro; // Resistance at TREF 
double c; // Temperature coefficient 
double cp; // Heat capacity (J/g/C) 
double mass; // Resistors mass (g) 

]; 
const struct resistor rfield = { 0.078, 0.0025, 

0.963, 8.44e+04 ?; 
const struct resistor rpscr = { 1_27e-04, 0.0045, 

0.906, 3.00e+03 1; 
const struct resistor rnscr = { 1.22e-03, 0.0045, 

0.906, 3.00e+03 1; 
const struct resistor rlscr = { 1.27e-04, 0.0045, 

0.906, 3.00e+03 ]; 
const struct resistor rphs[PHASE] = 

{ { 4.46e-04, 0.004, 0.963, 3.41e+04], 
{ 3.71e-04, 0.004, 0.963, 2.83e+04], 
{ 3.41e-04, 0.004, 0.963, 2.60e+04] ]; 

//Inductance table for the stator 
const double mut[PHASE][PHASE] = 
{ { l.l6e-06, -4.72e-07, -4.35e-07 ], 

{ -4.72e-07, l.l2e-06, -4.74e-07 }, 
{ -4.35e-07, -4.74e-07, 1_07e-06 ] >; 

//Mutual inductance phase coil and field coil 
const double mf[] = {2.92e-05, 2.68e-05, 2_46e-05 }; 
//Angle offset 
const double 
const double 
const double 
const double 
const double 
const double 

os[l = ( 0.0, X.9635, 3.9270 }; 

hfield = 2.28e-03; //Field coil 
hpscr = 1.94e-07; //Diode inductance 
hnscr = 2.60e-06; //Diode inductance 
hlscr = 1.94e-07; //Diode inductance 
moi = 2.83333; //4*Mom. of inertia 

//(kg*m*)/POLE/POLE 
mass = 0.640; //2 * Mass (kg) 
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26: 
27: 
28: 

// The load inductance as a function of a position 
double hload ( const double x ) { 

if ( x < 3.0 ) return 3.6e-07*x + 2.5e-07; 
return 13.3e-07; 

] 

29: 
30: 
31: 

// The gradiant of the load inductance 
double dhdx ( const double x ) { 

if ( x c 3.0 ) return 3.6e-07; 
return 0.0; 

] 

32: 
33: 
34: 

35: 
36: 
37: 

// The rail-gun resistance 
double rload ( const double x ) { 

if ( x -z 3.0 ) return 8.33e-05*x + 2.38e-04; 
return 4.879e-04; 

] 
/*____ End of parameter & function block--------*/ 
typedef short int BOOL; 
#define TRUE 1 
#define FALSE 0 

38: 
// Structure for a matrix of real values 
struct matrix { 

double v[MAX] [MAX]; 
int r; //Row index dimension 
int c; //Column index dimension 

] rmf, temp, h, r; 

39: 
// Structure for a matrix of integer values 
struct i-matrix { 

short int v[MAXl [MAXI; 
short int r; // Row index dimension 
short int c; // Column index dimension 

] kir, loop: 
40: short int index[PBASE]; // Phase index 
41: short int np_phs; // Number of pos. phases 
42: short int nt_phs; // Total number phases 
43: short int diode[MAX]; // Diode number 
44: BOOL b_load[MAX]; // Diode conducting to load 
45: BOOL b_field[MAXl; // Diode conducting to field 
46: BOOL load-flag; // A diode conducts to load 
47: short int np_d; // Number of pos. diodes 
48: short int nt_d; // Total conducting diodes 

49: 

50: 

51: 

// Structure for a real vector 
struct rvec { 

double v[MAXl; 
int n; 

1; 
struct mechanic { 

double w; // 
double th; // 
double v; // 
double x; // 

I; 
struct thermal 1 

double prec[PRASE]; // 
double nrec[PHASEl; // 

Angular frequency 
Phase angle 
Projectile velocity 
Projectile position 

Pos. diode temp 
Neg. diode temp 
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. 

. 

double lrec[PHASEl; // Load diode temp 
double phs[PHASE]; // Phase coil temp 
double field; // Field coil temp 

I; 
52: struct config { 

// Conducting state of the pos. diodes. 
BOOL prec[PHASEl; 
// Conducting state of the neg. diodes. 
BOOL nrec[PHASEl; 
// Conducting state of the load diodes. 
BOOL lrec[PHASEl; 
BOOL load; 

lcf; // The configuration 
53: struct current { 

// All diode currents are positive 
double prec[PHASEl; // Pos. diode current 
double nrec[PHASEl; // Neg. diode current 
double lrec[PHASE]; // Load diode current 
double phs[PHASEl; // Phase coil current 
double field; // Field coil current 
double load: // Load current 

I; 
54: struct. state { 

struct mechanic m; 
struct thermal tc; 
struct current a; 
struct config *c; // Active configuation 

); 
55: struct voltage 1 

// Voltage across each phase coil 
double vphs[PHASEl; 
-// Voltage of the positive busbar. 
double vplus; 
// Voltage of the negative busbar 
double vminus; 
// Voltage across the load. 
double vload; 

); 
/* -______-_-__ main () _-________________~~~~~~-~*/ 

56: void main 0 { 
57: void initiate ( struct state *, double, 

double, double ); 1 

58: void deriv ( const struct state *, struct state * ); 
59: void setup ( const struct config * ); 
60: void advance ( struct state *, struct state *, 

double 1; 
61: void report ( const struct state * , const double ); 
62: void copy ( struct state *, const struct state *); 
63: void rk4 ( struct state *, const struct state *, 

const struct state *, const double ); 
64: BOOL check ( const struct state *, 

const struct state *, struct state *, 
const struct state *, struct config *, 
double * 1; 
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65: void dump ( const double t, const struct state * 1; 
66: double seed; //Seed field current (amps) 
67: double tamb; //Ambient Temperature 

68: double rpm; //Initial rpm 
69: char fname[40]; //Output file name 
70: double t, tstep, tclose, topen, tend; 
71: double dt; 
72: int i, skip, rc; 
73: struct state yo; // State variables 
74:'struct state dye;// and derivatives 
75: struct state yn; 
76: struct state dyn; 
77: struct config *pc_o; 
78: struct config c-n; 
79: printf ("Output File: "1; 

80: scanf (u%s", fname); 

81: fp = fopen ( fname, "w'); 

82: printf ("Field current (a) = "1; 
83: scanf ("%le", &seed); 
84: printf ("Initial rpm = "1; 
85: scanf ("%le", &rpm) ; 
86: printf ("Temperature (C) = "1; 
87: scanf ("%le", &tamb); 

88: printf ("Time step = "1; 
'89 : scanf ("%le", &tstep) ; . 
90: printf ("Close Time = "1; 
91: scanf ("%le", &tclose); 
92: printf ("Open Time = "); 
93: scanf ("%le", Gtopen); 

94: printf ("End Time = "); 
95: scanf ("%le", &tend); 
96: printf ("Report Skip = "1; 
97: scanf ("%d", &skip); 
98: rc = 1; 
99: y0.c = &cf; // The original configuration 

100: t = 0.0; 
101: initiate ( &yo, tamb, seed, rpm ); 

102: deriv ( &yo, &dyo 1; 
103: report ( &yo, t 1; 
104: while (t < tclose 1 t 
105: advance ( &yo, &dyo, tstep 1; 
106: t += tstep; 
107: if ( rc == skip ) { 

108: report ( &yo, t 1; 
109: rc = 0; 

] 
110: rc++; 

] 
111: dump 1 t, &YO 1; 

112: if ( t c tend 1 { 
113: for (i = 0; i < PHASE; i++) { 

114: c_n.prec[il = yo.c->prec[il; 

115: c_n.nrec[i] = yo.c->nrec[il; 

116: c_n.lrec[il = yo.c->lrec[il; - 
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117: 
118: 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 0 
129: 
130: 

131: 
132: 

133: 
134: 
135: 
136: 
137: 
138: 

139: 
140: 
141: 
142: 

143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 

151: 

152: 

153: 

154: 

155: 
156: 

c_n.load = TRUE; 
PC-0 = y0.c; 
y0.c = &c-n; 
1= 0; 
do 1 

setup ( &c-n 1; 
deriv ( &yo, &dyo 1; 
rk4 ( &yn, &yo, stdyo, tstep ); 
deriv ( &yn, &dyn 1; 
if(i==3)( 

printf ("Reconfiguration Error\n"); 
'Y0.C = pc_o; 

dump ( t, &YO 1; 
exit( 0 ); 

1 
i++; 

1 while ( check (&yo, &dyo, &yn, 
&dyn, &c-n, &dt) ); 

y0.c = pc_o; 
dyo.c = PC-O; 
for (i = 0; i < PHASE; i++) { 

yo.c->prec[il = c_n.prec[il; 
yo>c->nrec[il = c_n.nrecCil; 
yo.c->lrec[il = c_n.lrec[il; 

I 
yo.c->load = c_n.load; 
report ( &yo, t 1; 
printf ("Report Skip = "); 
scanf ("%d", &skip) ; 

I 
rc = 1; 
while ( t -c tend && load-flag ) 1 

if ( t > topen ) yo.c->load = FALSE; 
advance ( &yo, &dyo, tstep ); 
t += tstep; 
if ( rc == skip 1 1 

report ( &yo, t ); 
rc = 0; 

1 
rc++; 

I 
1 // End of main 0 
void report ( const struct state *s, 

const double time 1 { 
fprintf ( fp, II %8.3f %8.3f %8.3f\n", 

time*lOOO.O, s->a.field/lOOO.O, 
s->a.load/lOOO.O ); 

1 
// Initiates struct state *t 
void initiate (struct state *t, double ta, 

double af, double rpm ) 1 

void setup ( const struct config *PC ); 
double mag, arg, magmax; 
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157: 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 

189: 
190 : 

191: 
192: 
193: 

194: 

195: 

196: 

197: 
198: 

i 

double xa, ya, dx, dy; 
int i, j, imax, jmax; 

t->m.th = 0.0; 
t->m.w = PI*POLE*rpm/GO.O 
t->m.v = 0.0; 
t->m.x = 0.0; 
t->tc.field = ta; 
t->c->load = FALSE; 
magmax = -1.0; 
for ( i = 0; i < PHASE; i++ ) 

t->c->prec[i] = FALSE; 
t->c->nrec[i] = FALSE; 
t->c'>lrec[i] = FALSE; 
t->a.prec[il = 0.0; 
t->a.nrec[il = 0.0; 
t->a.lrec[i] = 0.0; 
t->a.phs[il = 0.0; 
t->tc.prec[il = ta; 
t->tc.nrec[il = ta; 
t->tc.lrec[i] = ta; 
t->tc.phs[il = ta; 
xa = mf[il*cos( os[il 1; 
ya = mf[i]*sin( os[il 1; 

I 

for ( j = i+l; j < PHASE; j++ ) { 
d_x = xa - mf[jl*cos ( os[jl 1; 
dy = ya - mf[jl*sin ( os[jl 3; 
mag = sqrt( dx*dx 
if ( mag > magmax 

imax = ii 
jmax = j; 
magmax = mag; 

arg = atan ( 

1 
1 

1 
t->c->prec[jmax] = TRUE; 
t->a.prec[jmaxl = af; 
t->a.phs[jmaxl = af; 
t->c->nrec[imax] = TRUE; 
t->a.nrec[imaxl = af; 
t->a.phs[imax] = -af; 
t->m.th = -arg; ’ 
t->a.load = 0.0; 
t->a.field = af; 
setup ( t->c 1; 

1 // End of initiate () 

+ dy*dy )i 
1 1 

dy, dx ]; 

199: void setup ( const struct config *c 1 { 
200: int i, j; 

// Zero out the matricies 

201: for (i = 0; i < MAX; i++ ) 
202: for (j = 0; j < MAX; j++ 1 1 
203: kir.v[il[jl = 0; 
204: loop.v[il[jl = 0; 

> 
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205: 
206: 
207: 
208: 
209: 
210: 
211: 

212: 
213: 

214: 
215: 
216: 
217: 
218: 

219: 
220: 
221: 
222: 
223: 
224: 

225: 

226: 
227: 

228: 
229: 
230: 
231: 
232: 
233: 
234: 
235: 
236: 
237: 
238: 
239: 

240: 

241: 
242: 

243: 

244: 
245: 

kir.r = 0; 
kir.c = 0; 
loop-r = 0; 
1oop.c = 0; 
nt_d = 0; 
nt_phs = 0; 
load-flag = FALSE; 
// Diodes on the positive phases 
for (i = 0; i < PHASE; i++) { 

if ( !c->nrec[il && 
(c->prec[il 11 c->lrec[il) ) 

if ( c->prec[il ) { 
diode[nt_dl = nt_phs; 
b_field[nt_dl = TRUE; 
b_load[nt_dl = FALSE; 
nt_d++; 

I 
if ( c->lrec[il ) ( 

load-flag = TRUE; 
diode[nt_dl = nt_phs; 
b_field[nt_dl = FALSE; 
b_load[nt_d] = TRUE; 
nt_d++; 

I 
index[nt_phs++] = i; 

] 
> 
np_d = nt_d; 

np_phs = nt_phs; 
// Diodes on the negative phases 
for (i = 0; i < PHASE; i++) 

if ( c->nrec[i] ) ( 
diode[nt_dl = nt_phs; 
b_field[nt_d] = TRUE; 
b_load[nt_dl = FALSE; 
nt_d++; 
if ( c->lrec[i] ) { 

load-flag = TRUE; 
diode[nt_d] = nt_phs; 
b_field[nt_d] = FALSE 
b_load[nt_d] = TRUE; 
nt_d++; 

? 
index[nt_phs++] = i; 

] 
// Construct the Kirchhoff matrix 

for (j = 0; j < np_d; j++) { 
kir.v[diode[j]][jl = 1; 
// Field current 
if ( b_field[jl ) kir.v[nt_phsl[jl = 
// Diode identity 
kir.v[nt_phs + 1 + jl[jl = 1; 
if ( b_load[jl ) 

1 

kir.v[nt_phs + nt_d + 11 [jl = 1 ; 
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246: 
247: 
248: 

249: 
250: 

for (j = np_d; j c nt_d; j++) { 
if ( b_field[jl ) kir.v[diode[j]][jl = -1; 
else kir.v[diode[j]][j] = 1; 
// Diode identitiy 
kir.v[nt_phs + 1 + j] [j] = 1; 
if ( b_load[j] ) 

kir.v[nt_phs + nt_d + 11 [jl = 1; 

] 
251: kir.r = nt_phs + nt_d + 1; 
252: if ( load-flag ) kir.r++; 
253: kir.c = nt_d; 

254: 
255: 
256: 
257: 

// Eliminate the first negative diode current 
for ( i = 0; i -z np_d; i++ ) 

if ( b_field[i] ) { 
kir.v[np_phs] [il += -1; 
kir.v[nt_phs + np_d + 11 [il += 1; 

] 
258: 
259: 
260: 
261: 

for ( i = np_d; i e nt_d; i++ ) 
if ( b_field[i] ) { 

kir.v[np_phs][i] += 1; 
kir.v[nt_phs + np_d + 11 [il += -1; 

] 

262: 
263: 
264: 

265: 

266: 

267: 

268: 

269: 

270: 

271: 
272: 

273: 

274: 

275: 

// Eliminate the zero column from the matrix 
kir.c--; 
for ( i = 0; i c kir.r; i++) 

for ( j = np_d; j < kir.c; j++) 
kir.v[il[j] = kir.v[i][j+l]; 

// Construct the loop matrix 
// The loops through the pos. phase currents 
for (i = 0; i < np_d; i++) { 

// Loop through the phase coil, 
//field coil & first neg. 
if ( b_field[i] ) { 

// The phase coil 
loop.v[loop.r][diode[il] = 1; 
// The field coil column 
loop.v[loop.rl[nt_phs] = 1; 
// The pos. field diode 
loop.v[loop.r][nt_phs + i + l] = 1; 
// The first neg. phase 
loop.v[loop.r][np_phs] = -1; 
// The neg. field diode 
loop.v[loop.r][nt_phs + np_d + l] = 1; 
loop-r++; 

] 
] 
// Loop through the first pos. 
// field coil & rest of neg. phase 
j = 0; 
//Find first pos. phase to field 
while ( !b_field[j] ) j++; 
//Index to the pos. phase. 
j = diode[jl; 
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276: 
277: 

278: 

279: 

280: 

281: 

282: 
283: 

284: 

285: 
286: 
287: 
288: 
289: 
290: 
291: 

292: 

293: 

294: 

295: 

296: 
297: 
298: 
299: 

300: 
301: 
302: 
303: 
304: 
305: 
306: 
307: 
308: 
309: 
310: 

for ( i = np_d + 1; i -C nt_d; 
if ( b_field[il 1 { 

// First phase coil 
loop.v[loop.rl[jl = 1 ; 
// Field coil 
loop.v[loop.rl 
// First pos. 
loop.v[loop.rl 
// Neg. phase 
loop.v[loop.rl 

i++) { 

[nt_phsl = 1; 
field diode 
[nt_phs + j + 11 = 1; 
coil 
[diode[i]] = -1; 

// Neg. field diode 
loop.v[loop.r][nt_phs + i + l] = 1; 
loop.r++; 

3 
] 
1oop.c = nt_phs + nt_d + 1; 
// Loop through the load 
if ( load-flag ) { 

for (i = 0; i c nt_d; i++) { 
if ( b_load[il 1 { 

loop.v[loop.r] [diode[i]] = 1; 
loop.v[loop.r][nt_phs + i + 11 = 1; 
loop.v[loop.r] [loop.c] = 1; 
loop.r++; 

I 

I 
loop.c++; 

] 
return; 

] // End of setup0 
// Advance the state structures by a time step 
void advance ( struct state *y, struct state *dy, 

double ts ) { 
void rk4 ( struct state *, const struct state *, 

const struct state *, const double 1; 
void deriv ( const struct state *, struct state * 1; 
void copy ( struct state *, const struct state * 1; 
void setup ( const struct config * ); 
BOOL check ( const struct state *, 

const struct state *, 
struct state *, const struct state *, 
struct config *, double * 1; 

void dump ( const double , const struct state * ); 
struct state yn; 
struct state dyn; 
struct config c-n; 
struct config *co; // Original config. 
double dt; 
int 1, cnt; 

co = y->c; 

rk4 ( W-L y, dy, ts 1; 
deriv ( &yn, &dyn ); 

if ( check ( y, dy, &yn, &dyn, &c-n, &dt ) ) { 
// Advance to the approx. time of - 
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311: 
312: 
313: 
314: 

315: 
316: 

317: 
318: 

319: 
320: 
321: 

322: 
323: 
324: 
325: 
326: 
327: 
328: 
329: 
330: 
331: 

332: 
333: 

334: 
335: 
336: 
337: 
338: 
339: 
340: 

341: 
342: 

343: 
344: 

// change using the original configuration 
if ( dt c 0.0 11 dt > 1.0 ) { 

printf ("dt = %e out of bounds\n", dt); 

dump ( dt, Y 1; 
exit( 0 ); 

] 
rk4 ( &yn, y, dy, ts*dt ); 
deriv ( &yn, &dyn 1; 
//The new becomes the original 
copy ( y, &y-n ); 

COPY ( dy, &dyn ); 
// Try advancing a full time step 
// using the new config. 
Y-X = &c-n; 

dy->c = &c-n; 
cnt = 0; 

do 1 
setup ( &c-n 1; 
deriv ( y, dy 1; 

rk4 ( &yn, y, dy, ts 1; 
deriv ( &yn, &dyn ); 
if ( cnt == 3 ) { 

printf ("Reconfiguration Error\n"); 
Y-X = co; 
dump ( 0.0, Y 1; 

exit( 0 ); 

] 
cnt++; 

] while ( check (y, dy, &yn, 

y->c '= co; 

&dyn, &c-n, &dt) 1; 

dy->c = co; 
y->c->load = c-n-load; 
for (i = 0; i < PHASE; i++) { 

y->c->prec[i] = c_n.prec[il; 
y->c->nrec[i] = c_n.nrec[i]; 
y->c->lrec[i] = c_n.lrec[i]; 

I 
// Advance to the end of the time step 
rk4 ( &yn, y, dy, ts*(l.O-dt) 1; 
deriv ( &yn, &dyn 1; 

] 
copy ( Y, Wn 1; //The new becomes the original 

COPY ( dy, &dyn 1; 
} // End of advance 0 
// Generates a dump file for the state structure 

345: void dump ( const double t, 
const struct state *s ) 1 

346: FILE *fdmp; 
347: int i; 
348: fdmp = fopen ("DUMP-OUT", “w”); 
349: fprintf (fdmp, ' %24.16e\n", t); 
350: fprintf (fdmp, V %24.16e\n", s->m.w); 
351: fprintf (fdmp, II %24.16e\n", s->m.th); _ 
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352: 
353: 
354: 
355: 
356: 
357: 
358: 

359 : 

360: 
361: 
362: 
363: 
364: 

365: 
366: 
367: 

368: 
369: 

370: 
371: 

372: 
373: 
374: 

375: 

376: 
377: 
378: 
379: 
380: 

381: 
382: 
383: 
384: 
385: 

386: 

387: 
388: 

389 : 

390 : 

391: 

fprintf (fdmp, ' %24.16e\n", s->m.v); 
fprintf (fdmp, ' %24.16e\n", s->m.x); 
for (i = 0; i -C PHASE; i++) { 

fprintf (fdmp, V %24.16e", s->tc.prec[i]); 
fprintf (fdmp, U %24.16e", s->tc.nrec[i]); 
fprintf (fdmp, M %24.16e", s->tc.lrec[il); 
fprintf (fdmp, ' %24.16e\n", s->tc.phs[il); 

I 
fprintf (fdmp, M %24.16e\n", s->tc.field); 
for (i = 0; i < PHASE; i++) { 

fprintf (fdmp, n %24.16e", s->a.prec[i]); 
fprintf (fdmp, It %24.16e", s->a.nrec[il); 
fprintf (fdmp, N %24.16e", s->a.lrec[il); 
fprintf (fdmp, w %24.16e\n", s->a.phs[i]); 

1 
fprintf (fdmp, U %24.16e\n", s->a.field); 
fprintf (fdmp, ’ %24.16e\n", s->a.load); 
for (i = 0; i c PHASE; i++) 

-fprintf (fdmp," %ld", s->c->prec[i]); 
fprintf (fdmp, "\nU); 
for (i = 0; i < PHASE; i++) 

fprintf (fdmp,ll %ld", s->c->nrec[i]); 
fprintf (fdmp, "\nu); 
for (i = 0; i < PHASE; i++) 

fprintf (fdmp," %ld", s->c->lrec[i]); 
fprintf (fdmp, "\n"); 
fprintf (fdmp, U %ld\n", s->c->load 1; 
fclose (fdmp); 

I // End of dump 
// The fourth-order Runge-Kutta 
void rk4 ( struct state *sn, const struct state *so, 

const struct state *dso, 
const double h) I 

struct state dym; 
struct state yt; 
struct state dyt; 
void deriv ( const struct state *, struct state * ); 
void euler ( struct state *, const struct state *, 

const struct state *, const double ); 
double hh, hs; 
int i; 

hh = h/2.0; 
hs = h/6.0; 
sn->c = so->c; 
// First step 
euler ( &yt, so, dso, hh ); 
// Second step 
deriv ( &yt, &dyt 1; 
euler ( &yt, so, &dyt, hh ); 
// Third step 
deriv ( &yt, &dym I; 
euler ( Lyt, so, &dym, h 1; 
// Add the derivatives 
dym.m.x += dyt.m.x; 
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392: 

393: 

394 : 

395: 

396: 

397 : 

398: 

399: 
400: 
401: 
402: 
403: 
404: 
405: 
406: 

407: 
408: 

409: 

410: 

411: 

412: 

413: 

414: 

415: 
416: 

417: 

418: 

419 : 

420: 

421: 

dym.m.v += dyt.m.v; 
dym.m.w += dyt.m.w; 
dym.m.th += dyt.m.th; 
dym.a.load += dyt.a.load; 
dym.a.field += dyt.a.field; 
dym.tc.field += dyt.tc.field; 
for (i = 0; i c PHASE; i++) ( 

dym.tc.prec[il += dyt.tc.prec[il; 
dym.tc.nrec[il += dyt.tc.nrec[il; 
dym.tc.lrec[il += dyt.tc.lrec[il; 
dym.tc.phs[il += dyt.tc.phs[il; 
dym.a.prec[il += dyt.a.prec[il; 
dym.a.nrec[i] += dyt.a.nrec[il; 
dym.a.lrec[il += dyt.a.lrec[il; 
dym.a.phs[il += dyt.a.phs[il; 

> 
// Fourth step 
deriv ( &yt, &dyt 1; 
sn->m.x = so->m.x + 

hs*(dso->m.x + dyt.m.x + 2.0*dym.m.x); 
sn->m.v = so->m.v + 

hs*(dso->m.v + dyt.m.v + 2.0*dym.m.v); 
sn->m.w = so->m.w + 

hs*(dso->m.w + dyt.m.w + 2.0"dym.m.w); 
sn->m.th = so->m.th + 

hs*(dso->m.th + dyt.m.th + 2.0*dym.m.th); 
sn->a.load = so->a.load 

+ hs*(dso->a.load + dyt.a.load 
+ 2.0*dym.a.load); 

sn->a.field = so->a.field 
+ hs*(dso->a.field + dyt.a.field 
+ 2.0"dym.a.field); 

sn->tc.field = so->tc.field 
+ hs*(dso->tc.field + dyt.tc.field 
+ 2.0*dym.tc.field); 

for (i = 0; i < PHASE; i++) { 
sn->tc.prec[il = so->tc.prec[il 

+ hs*(dso->tc.prec[il + dyt.tc.prec[il 
+ 2.0*dym.tc.prec[il); 

sn->tc.nrec[il = so->tc.nrec[il 
+ hs*(dso->tc.nrec[il + dyt.tc.nrec[il 
+ 2.0*dym.tc.nrec[il); 

sn->tc.lrec[il = so->tc.lrec[il 
+ hs*(dso->tc.lrec[il + dyt.tc.lrec[:il 
+ 2.0*dym.tc.lrec[il); 

sn->tc.phs[il = so->tc.phs[il 
+ hs*(dso->tc.phs[il + dyt.tc.phsLi.1 
+ 2.0*dym.tc.phs[il); 

sn->a.prec[i] = so->a.prec[il 
+ hs*(dso->a.prec[il + dyt.a.prec[il 
+ 2.0*dym.a.prec[il); 

sn->a.nrec[i] = so->a.nrec[il 
+ hs*(dso->a.nrec[i] + dyt.a.nrec[il 
+ 2.0*dym.a.nrec[il); 
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422: 

423: 

sn->a.lrec[il = so->a.lrec[il 
+ hs*(dso->a.lrec[il + dyt.a.lrec[i 
+ 2.0*dym.a.lrec[il); 

sn->a.phs[i] = so->a.phs[il 
+ hs*(dso->a.phs[il + dyt.a.phs[il 
+ 2.0*dym.a.phs[il); 

1 
) // End of rk40 
// Euler method advances the state by a time step 

424: void euler (struct state *sn, 

425: 
426: 

427: 
428: 
429: 
430: 
431: 
432: 
433: 
434: 

435: 

436: 

437: 

438: 

439: 

440: 

441: 

442: 

const struct state *so, 
.const struct state *dso, 
const double h ) 1 

int i; 
sn->c = so->c; 
// The mechanical part 
sn->m.x = so->m.x + h * dso->m.x; 
sn->m.v = so->m.v + h * dso->m.v; 
sn->m.th = so->m.th + h * dso->m.th; 
sn->m.w = so->m.w + h * dso->m.w; 
'sn->tc.field = so->tc.field + h * dso->tc.field; 
sn->a.field = so->a.field + h * dso->a.field; 
sn->a.load = so->a.load + h * dso->a.load; 
for (i = 0; i < PHASE; i++) { 
// The temperatures 

sn->tc.prec[il = so->tc.prec[il 
+ h * dso->tc.prec[il; 

sn->tc.nrec[il = so->tc.nrec[il 
+ h * dso->tc.nrec[il; 

sn->tc.lrec[i.l = so->tc.lrec[il 
+ h * dso->tc.lrec[il; 

sn->tc.phs[il = so->tc.phs[il 
+ h * dso->tc.phs[il; 

// The currents 
sn->a.prec[il = so->a.prec[il 

+ h * dso->a.prec[il; 
sn->a.nrec[il = so->a.nrec[il 

+ h * dso->a.nrec[il; 
sn->a.lrec[il = so->a.lrec[i 

+ h * dso->a.lrec[i]; 
sn->a.phs[il = so->a.phs[il 

+ h * dso->a.phs[il; 

1 
) // End of euler0 
// Copies the source structure over to the target 

443: void copy ( struct state *St, 
const struct state *ss 1 { 

444: int i; 
445: st->c = ss-x!; 

// The mechanical part 
446: st->m.x = ss->m.x; 
447: st->m.v = ss->m.v; 
448: st->m.th = ss->m.th; 
449: st->m.w = ss->m.w; 
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450: st->tc.field = ss->tc.field; 
451: st->a.field = ss->a.field; 
452: st->a.load = ss->a.load; 
453: for (i = 0; i -C PHASE; i++) { 

// The temperature part 

454: st->tc.prec[il = ss->tc.prec[il; 

455: st->tc.nrec[il = ss->tc.nrec[il; 

456: st->tc.lrec[i] = ss->tc.lrec[il; 
457: st->tc.phs[il = ss->tc.phs[il; 

// The currents 
458: st->a.prec[il = ss->a.prec[il; 
459: st->a.nrec[il = ss->a.nrec[il; 
460: st->a.lrec[il = ss->a.lrec[il; 

461: st->a.phs[il = ss->a.phs[il; 

1 
I// End of copy0 
// Returns the derivative of a state 

462: void deriv ( const struct state *s, 
struct state *ds 1 l 

463: double hload ( const double x 1; 
464: double dhdx ( const double x 1; 
465: double rload ( const double x 1; 
466: double mfi ( const double , const int 1; 
467: double dmfi ( const double , const int 1; 
468: double dTdt ( const struct resistor *r, 

const double 1; 
469: double rt ( const struct resistor *r, 

const double ); 
470: BOOL minv ( struct matrix * ); 
471: int i, j, k, m, n; 
472: double sum; 
473: struct rvec di; // List of diode currents 
474: struct rvec di_dot; // Derivative of diode currents 
475: struct rvec amp-dot;// Vector of all the i-dots 
476: ds->c = s->c; // Both have the same config. 

477: 

478: 

479 : 

480: 
481: 
482: 

483: 

484: 

485: 
486: 

// The mechanical variables 
ds->m.x = s->m.v; // Projectile velocity 
// Projectile acceleration 
ds->m.v = s->a.load * s->a.load 

* dhdx ( s->m.x )/mass; 
ds->m.th = s->m.w; // Angular velocity 
sum = 0.0; 
for (i = 0; i < PHASE; i++) 

sum += s->a.phs[i] * dmfi( s->m.th, i ); 
// Angular acceleration 
ds->m.w = sum * s->a.field /moi; 
// The thermal variables and 
// zero out the current section 
ds->tc.field = s->a.field * s->a.field * 

dTdt (&rfield, s->tc.field 1; 
for ( i = 0; i < PHASE; i++ ) { 

ds->tc.prec[il = s->a.prec[i]*s->a.prec[il 
* dTdt (&rpscr, s->tc.prec[il 1; 
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487: 

488: 

489: 

490: 
491: 
492: 
493: 

494: 

495: 
496: 
497: 

498: 

499: 
500: 
501: 
502: 
503: 
504: 

505: 
506: 
507: 
508: 
509: 
510: 
511: 
512: 

513: 
514: 
515: 
516: 
517: 

518: 
519: 
520: 
521: 

ds->tc.nrec[il = s->a.nrec[i]'*s->a.nrec[i] 
* dTdt (&rnscr, s->tc.nrec[i] ); 

ds->tc.lrec[i] = s->a.lrec[il*s->a.lrec[il 
* dTdt (&rlscr, s->tc.lrec[i] ); 

ds->tc.phs[il = s->a.phs[i]*s->a.phs[i] 
* dTdt (&rphs[il, s->tc.phs[i]); 

I 
// The currents 

di.n = 0; 
for (i = 0; i < np_d; i++) { 

j = index[ diode[i] I; 
if ( b_field[il ) 

di.v[di.n++] = s->a.prec[j]; 

if ( b_load[il 1 
di.v[di.n++l = s->a.lrec[j]; 

// Skips the first negative diode 
for (i = np_d + 1; i < nt_d; i++) { 

j = index[ diode[il 1; 
if ( b_field[i] ) 

di.v[di.n++] = s->a.nrec[j 
if ( b_load[il ) 

I; 

di.v[di.n++l = s->a.lrec[jl; 

// Zero out the matricies 
for (i = 0; i < MAX; i++ ) 

for (j = 0; j -z MAX: j++ ) { 
rmf.v[i][jl = 0.0; 
temp.v[il[jl = 0.0; 

..h.v[il[jl = 0.0; 
r'.v[i][j] = 0.0; 

] 
rmf.r = 0; 
rmf.c = 0; 
temp.r = 0; 
temp.c = 0; 
h.r = 0; 
h.c = 0; 
r.r = 0; 
r.c = 0; 
// Construct the matrix of the resistances 
// The phase coil resistances 
for (i = 0; i < ntghs; i++) { 

j = indexCi1; 
rmf.v[i] [i] = rt( rphs + j, s->tc.phs[jl ); 
rmf.v[il [nt_phsl = s->m.w * dmfi(s->m.th,j); 
rmf.v[nt_phsl[il = rmf.v[il [nt_phsl; 

I 
// The field coil resistance 
rmf.v[nt_phsl[nt_phsl = rt(&rfield,s->tc.field); 
for (i = 0; i < np_d; i++) { 

j = index[ diode[il 1; 
k = nt_phs + i + 1; 
// The positive diode resistances - 
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522: if ( b_field[il 1 
rmf.v[kl[kl = rt(&rpscr,s->tc.prec[jl); 

if ( b_load[il ) 
rmf.v[k] [k] = rt(&rlscr,s->tc.lrec[jl); 

] 
for (i = np_d; i < nt_d; i++) { 

j = index[ diodeIi.1 1; 
k = nt_phs + i + 1; 
// The negative diode resistances 
if ( b_field[il 1 

rmf.v[kl [kl = rt(&rnscr,s->tc.nrecIjl); 

if ( b_load[il ) 
rmf.v[k][k] = rt(&rlscr,s->tc.lrec[j]); 

523: 

524: 
525: 
526: 

527: 

528: 

529: 
530: 
531: 
532: 

533: 
534: 

535: 
536: 
537: 
538: 
539: 
540: 
541: 

542: 
543: 

544: 
545: 
546: 
547: 
548: 

549: 
550: 
551: 
552: 
553: 

554: 
555: 
556: 
557: 
558: 
559: 
560: 

I 
rmf.r = nt_phs + nt_d + 1; 

rmf 
if 

c = rmf.r; 

; load-flag 1 1 
rmf.v[rmf.rl[rmf.cl = rload (s->m.x) 

+ s->m.v*dhdx( s->m.x ); 

rmf.r++; 
rmf.c++; 

// Multiply loop * rmf * kir 
for (i = 0; i < kir.c; i++) 

for (j = 0; j -z 1oop.r; j++) { 
for (m = 0; m c rmf.r; m++) C 

sum = 0.0; 
for (n = 0; n < kir.r; n++) 

sum += rmf.v[ml[nl*kir.v[nl [jl 
r.v[i][j] += loop.v[i][ml * sum; 

; 

I 
I 

r.r = 1oop.r; 
r.c = kir.c; 
// Construct the matrix of the inductances 
for (i = 0; i < nt_phs; i++) { 

temp.v[i][nt_phs] = mfi(s->m.th,index[i]); 
temp.v[nt_phs][i] = temp.v[i][nt_phs]; 
for (j = 0; j -z nt_phs; j++) 

temp.v[il[j] = mut[index[i]][index[j]]; 

temp.v[nt_phs] [ntqhs] = hfield; 
for (i = 0; i -z np_d; i++) { 

j = nt_phs + i + 1; 
if( b_field[il ) temp.v[jl[jl 
if (b_load[il ) temp.v{jl[jl 

] 
for (i = np_d; i -z nt_d; i++) 1 

j = nt_phs + i + 1; 
if( b_field[il ) temp.v[jl[jl 
if (b_load[il ) temp.v[jl[jl 

] 
temp.r = nt_phs + nt_d + 1; 
temp .c = nt_phs + nt_d + 1; 

= hpscr; 
= hlscr; 

= hnscr; 
= hlscr; 
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561: 
562: 
563: 
564: 

565: 
566: 
567: 
568: 
569: 
570: 
571: 

572: 
573: 
574: 
575: 
576: 
577: 
578: 
579: 

580: 

581: 
582: 
583: 
584: 
585: 
586: 
587: 

588: 

589: 
590: 
591: 

592: 
593: 
594: 

595: 
596: 
597: 

if ( load-flag ) { 
temp.v[temp.rl [temp.c] = hload ( s->m.x ); 
temp.r++; 
temp.c++; 

// Multiply loop * temp * kir 
for (i = 0; i < kir.c; i++) 

for (j = 0; j < 1oop.r; j++) { 
for (m = 0; m c temp.r; m++) 

sum = 0.0; 
{ 

for (n = 0; n c kir.r; n++) 
sum += temp.v[ml [nl*kir.v[nl[j 

h.v[i][j] += loop.v[il Em1 * sum; 

1 
1 

h.r = 1oop.r; 
h.c = kir.c; 
minv ( &h ); 

I; 

for (di_dot.n = 0; di_dot.n < h.r; di_dot.n++) { 
di_dot.v[di_dot.n] = 0.0; I 

for ( m = 0; m < h.c; m++) { 
sum = 0.0; 
for (j = 0; j < r.c; j++) 

sum += r.v[ml[jl*di.v[jl; 
di_dot.v[di_dot.nl -= 

h.v[di_dot.nl [ml*sum;. 

3 
1 
ds->a.load = 0.0; 
ds->a.field = 0.0; 
for (i = 0; i < PHASE; i++) ( 

ds->a.prec[i.l = 0.0; 
ds->a.nrec[il = 0.0; 
ds->a.lrec[il = 0.0; 
ds->a.phs[il = 0.0; 

// Put all the derivatives and currents 
// into the structure 
// Multiply the vector di_dot by the kir matrix 
for (amp_dot.n = 0; amp_dot.n < kir.r; 

amp_dot.n++) { 
amp_dot.v[amp_dot.nl = 0.0; 
for (j = 0; j < kir.c; j++ ) 

amp_dot.v[amp_dot.nl += 
kir.v[amp_dot.nl[jl*di_dot.v[jl; 

1 
// amp_dot.v is now a list of all the i-dots 
for (i = 0; i -C nt_phs; i++ ) 1 

j = index[il; 
ds->a.phs[jl = amp_dot.v[il; 

1 
ds->a.field = amp_dot.v[nt_phsl; 
for (i = 0; i < np_d; it+ 1 { 

j = index[ diodetil I; 
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598 : if ( b_field[il 
ds->a.prec[jl 

if ( b_load[il 
ds->a.lrec[jl 

] 

599 : 

= amp_dot.v[nt_phs + i + 11; 

1 
= amp_dot.v[nt_phs + i + 11; 

600: 
601: 

602: 

603: 

for (i. = np_d; i < nt_d; i++ ) { 
j = index[ diode[i] I; 
if ( b_field[i] ) 
ds->a.nrec[j] = amp_dot.v[nt_phs + i + 11; 

if ( b_load[il ) 
ds->a.lrec[j] = amp_dot.v[nt_phs + i + 11; 

] 
604: if ( load-flag ) 

ds->a.load = amp_dot.v[nt_phs + nt_d + 11; 
// End of deriv() 

6.05: void volts (struct voltage *volt, 

const struct state *s, 
const struct state *ds)I 

606: double mfi ( const double th, const int i ); 
607: double dmfi ( const double th, const int i 1; 
608: double rt (const struct resistor *, const double t); 
609: int i, j; 
610: double d; 
611: 
612: 
613: 

614: 
615: 

616: 

617: 
618: 
619: 

620: 
621: 
622: 

d = s->a.field * s->m.w; 
for (i = 0; i < PHASE; i++) ( 

volt->vphs[i] = -d*dmfi(s->m.th, i) 
- rt(rphs + i, s->tc.phs[il)*s->a.phs[il 
- ds->a.field * mfi(s->m.th, i); 

for (j = 0; j < PHASE; j++) 
volt->vphs[i] -= mut[il[jl*ds->a.phs[jl; 

1 
volt->vload = s->a.load*rload(s->m.x) 

+ ds->a.load*hload(s->m.x) 
+ s->m.v*dhdx(s->m.x)*s->a.load; 

// Search for a phase coil 
// conducting to the pos. busbar 
j = 0; 
while ( !s->c->prec[jl && j < PHASE ) j++; 
volt->vplus = volt->vphs[jl 

- rt (&rpscr, s->tc.prec[jl) * s->a.prec[jl 
- hpscr * ds->a.prec[jl; 

// Search for a phase coil 
// conducting to the neg. busbar 
j = 0; 
while ( !s->c->nrec[j] &EC j -z PJJASE ) j++; 
volt->vminus = volt->vphs[jl 

+ rt( &rnscr, s->tc.nrec[j] ) * s->a.nrec[jl 
+ hnscr * ds->a.nrec[j]; 

// End of volts 0 3 

t 

// Routine checks the new results for a change in 
// the configuration. Returns TRUE if there is a ’ 

// change and a dt for an approximate time when 
// the change occures. 

623: BOOL check ( const struct state *so, 
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const struct state *dso, 
I struct state *sn, 

const struct state *dsn, 
struct config *cn, double *dt 1 

624: void volts ( struct voltage *v, 
const struct state *s, 
const struct state *ds 1; 

625: BOOL test: 
626: struct voltage vo, vn; 
627: double tmin, t, dv; 

int i; 628: 
629: 
630: 
631: 
632: 
633: 
634: 
635: 
636: 
637: 
638: 

volts ( &vo, so, dso 1; 
volts ( m-n, sn, dsn 1; 
tmin = 1.0; 

639: 
640: 

641:' 
642: 
643: 

644: 

645: 
646: 
647: 
648: 
649: 
650: 

test = FALSE; // Assume no change in config. 

cn->load = so-x->load; 
for (i = 0; i < PHASE; i++ ) 1 

cn->prec[il = so-x->prec[il; 
cn->nrec[i] = so-xc->nrec[il; 
cn->lrec[i] = so->c->lrec[il; 
if ( so->c->prec[i] WC 

( sn->a.prec[il < 0.0 ) ) { 
// Diode has a reverse current 
test = TRUE; 
t = so->a.prec[il / 

(so->a.prec[il - sn->a.prec[i]); 
// Diode not conducting 
cn->prec[i.] = FALSE; 
sn->a.prec[i] = 0.0; 
if ( t < tmin ) tmin = t; 

I 
if ( !so->c->prec[i] && 

( vn.vphs[i] > vn.vplus ) ) { 
// Nonconducting diode is forward biased 
test = TRUE; 
dv = vo.vplus - vo.vphs[il; 
t = dv/( vn.vphs[i] - vn.vplus + dv ); 
cn->prec[i] = TRUE; // Conducting diode 
sn->a.prec[il = 0.0; 
if ( t -c tmin ) tmin = t 

] 
651: 

652: 
653: 

if ( so-z-c->nrec[il && 
( sn->a.nrec[il < 0.0 1 

// A diode has a reverse 
test = TRUE; 
t = so->a.nrec[il / 

1 { 
current 

654: 
655: 
656: 

657: 

(so->a.nrec[il - sn->a.nrec[il); 
cn->nrec[i] = FALSE; 
sn->a.nrec[il = 0.0; 
if ( t c tmin ) tmin = t; 

] 
if ( !so->c->nrec[i] && 

( vn.vphs[i] < vn.vminus 1 ) i 
// Nonconducting diode is forward-biased 

E 
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658: 
659: 
660: 

661: 
662: 
663: 

664: 

665: 
666: 

667: 

668: 
669: 

670: 

671: 
672: 
673: 
674: 
675: 
676: 

677: 
678: 

679 : 
680: 

681: 
682: 

683: 

684: 

685: 

686: 

687: 

test = TRUE; 
dv = vo.vminus - vo.vphs[il; 
t = dv/( vn.vphs[il - vn.vminus + dv ); 
// Diode becomes conducting 
cn->nrec[i] = TRUE; 
sn->a.nrec[i] = 0.0; 
if ( t -z tmin ) tmin = t; 

] 
if ( so->c->lrec [il 

&& (sn->a.lrec[i] < b.0) ) { 
// Load diode has a reverse current 
test = TRUE; 
t = so->a.lrec[il 

/ (so->a.lrec[i] - sn->a.lrec[il); 
// Diode is no longer conducting 
cn->lrec[i] = FALSE; 

sn->a.lrec[i] =,O.O; 
if ( t c tmin ) tmin = t; 

] 
if ( so->c->load && 

!so->c->lrec[i]&&(vn.vphs[il>vn.vload~~~ 
// A nonconducting diode has a forward 
// voltage bias. Section is skipped 
// when the load is not connected. 
test = TRUE; 
dv = vo.vload - vo.vphs[il; 
t = dv/( vn.vphs[il - vn.vload + dv 1; 
cn->lrec[i] = TRUE; 
sn->a.lrec[il = 0.0; 
if ( t < tmin ) tmin = t; 

] 
] 
*dt = tmin; 
return test; 

] // End of check 0 
double mfi ( const double th, const int i 1 1 

return mf[i]*sin(th + os[il); 
) // End of mfi0 
double dmfi ( const double th, const int i 1 I 

return mf[i]*cos(th + os[il); 
] // End of dmfi 0 
// The increase rate of the resistor's temperature 
double dTdt ( const struct resistor *Is, 

const double temp 1 1 
return ( rs->ro*( 1.0 + rs->c*(temp-TREF) ) 

/ rs-amass / rs->cp 1; 
] // End of dTdt0 
// The resistance at the temperature 
double rt ( const struct resistor *rs, 

const double temp 1 1 
return ( rs->ro*(l.O + rs->c*(temp-TREF) 1 1; 

) // End of rt0 
// Inverts the matrix 
BOOL minv ( struct matrix *a ) i 
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. 

688: int ik[ 
689: double 
690: double 
691: int i,j 
692: if 

. 

MA.W,jk[MAXl; 
amax,save; 
fabs(); 
,k; 
( a->r != a->c ) return FALSE; 

693: for (k = 0; k < a->c; k++) { 
/*Find the largest element of the matrix.*/ 

694 : 

695: 
696 : 

697 : 

698 : 

699 : 

700: 

amax = 0.0; 
for (i = k; i < a->c; i+t) 

for (j = k; j < a->c; j++) 
if (fabs(amax) c fabs(a->v[i 

amax = a->v[il[jl; 
ik[kl = i; 
jk[kl = j; 

1 

l[jl)) { 

/*Switch rows and columns to put amax on diagonal.*/ 
701: i = ik[k]; 
702: if (i != k) 
703: for (j = 0; j -z a->c; j+t) { 
704: save = a->v[kl[jl; 
705: a->v[kl[jl = a->v[il[jl; 
706: a->v[il[j] = -save; 

I 
707: j = jk[k]; 
708: if (j != k) 
709: for (i = 0; i < a->c; it+) { 

710: save = a->v[i] [k]; 
711: a->v[il [kl = a->v[il[jl; 
712: a->v[il[jl = -save; 

) 
/*Accumulate elements of the inverse matrix.*/ 

713: for (i = 0; i < a->c; i+t) 
714: if (i!=k) a->v[il [kl = -a->v[il 
715: for (i = 0; i < a->c; it+) 
716: for (j = 0; j c a->c; j++) 
717: if ((i!=k) && (j!=k)) 
718: a->v[i][jl = 

719 : 

720: 
721: 

722: 
723: 
724: 
725: 
726: 
727: 

728: 
729: 

[kl/amax; 

a->v[il [jlta->v[il [kl 
*a->v[kl[jl; 

for (j = 0; j -z a->c; jtt) 
if (j!=k) a->v[kl[jl = a->v[kl [jl/amax; 
a->v[kl[kl = l.O/amax; 

I 
/*Restore ordering of matrix.*/ 

for (k = a->c - 1; k > -1; k--) 1 

j = ik[kl; 
if (j>k) for (i = 0; i c a->c; i++) 1 

save = a->v[il [kl; 
a->v[il [kl = -a->v[ilIjl; 
a->v[il[jl = save; 

I 
i = jk[kl; 
if (i>k) for (j = 0; .j c a->c; j++) I- 

57 



730: save = a->v[kl[jl; 
731: a->v[k][j] = -a->v[i][j]; 
732: a->v[i.l[j] = save; 

I 
. 
j 

733: return TRUE; 
} // End of minv0 
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